
1 April 2000 Delphi Informant Magazine

April 2000, Volume 6, Number 4

Cover Art By: Arthur Dugoni

ON THE COVER
6 On the ’Net
WAP! Delphi Does Wireless — Jani Järvinen
After explaining the basics of Wireless Application Protocol and Wireless
Markup Language, Mr Järvinen demonstrates how to create a real-time,
order query system for use over a WAP phone.

FEATURES
11 DBNavigator
Interfaces Revisited: Part II — Cary Jensen, Ph.D.
Dr Jensen ends his series by showing how to use objects through inter-
face references, and by discussing two types of interface implementation
by delegation — one of which is inherently dangerous.

16 OP Tech
Sets to Strings, and Back — Ray Lischner
Mr Lischner demonstrates how to take advantage of Delphi’s Run-time
Type Information (RTTI) to write functions that convert any set to a string
and back again.

21 Greater Delphi
Maintaining State — Jon Etheredge
Maintaining the state of browser sessions is a classic Internet problem.
Mr Etheredge weighs the relative merits of cookies, URL variables,
hidden fields, etc. from a Delphi perspective.

26 Informant Spotlight
Readers Choice Awards 2000 — Chris Austria
Mr Austria runs down the winners of our annual Readers Choice Awards
in 20 categories. It’s an invaluable resource when it comes to determin-
ing the tools to acquire for that new project or feature.

REVIEWS
30 InfoPower 2000
 Product Review by Bill Todd

33 Mastering Delphi 5
 Book Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
5 Newsline
34 File | New by Alan C. Moore, Ph.D.

Developing WML Applications for Mobile Phones

2 April 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

MicroEdge Announces Visual SlickEdit 5.0 for Windows

Delphi COM Programming
Eric Harmon

Macmillan Technical Publishing

ISBN: 1-57870-221-6
Price: US$45 (510 pages)

Web Site: http://www.newriders.com
 MicroEdge, Inc. announced
the release of Visual SlickEdit
5.0 for Windows (Windows
95/98/NT), a multi-platform
editing solution supporting inte-
gration of all major IDEs across
all languages.
 New features for Visual
SlickEdit 5.0 include Context
Tagging, which performs expres-
sion type, scope, and inheritance
analysis on your source code,
even as you type. Supported lan-
guages include Delphi, HTML,
Ada, Cobol and OO Cobol,
C/C++, Java, JavaScript, Perl,
PV-Wave, InstallScript, and
Visual SlickEdit’s own Slick-C.
With Visual SlickEdit 5.0, Con-
text Tagging’s Auto List Mem-
bers feature will support viewing
comments for symbols with the
same name, and the Auto Func-
tion Help feature will display
function comments along with
the prototype and current argu-
ment. Context Tagging now sup-
ports C-style preprocessing for
Java (Visual J++ support), and
Javadoc comments are now dis-
played in a built-in HTML
browser with hyperlink support.
 The new version also offers
symbol references and uses. New
functionality for references
include a new References tab on
the Output toolbar, next/-
previous reference hot keys, and
a context menu item for query-
ing references for the symbol at
the cursor.
UCalc Announces UCalc Fas
 Visual SlickEdit’s DIFFzilla has
also been enhanced. Auto Reload
now provides the option to diff
an open file with the copy
on disk when Visual SlickEdit
detects that another application
has modified the file.
 Project management enhance-
ments are also included in Visual
SlickEdit 5.0. Multiple projects
may now be defined in a
workspace, and projects can be
shared between other work-
spaces. Dependencies may be
defined between projects in a
single workspace, allowing a
more sophisticated build pro-
cess. Another project manage-
ment enhancement is support
for projects with multiple lan-
guage file types.
 The FTP Client toolbar and
FTP Open tab now allow recur-
sive FTP directory operations.
t Math Parser 2.0
Developers will be able to
upload, download, and delete
entire directories. More host
support is available in Visual
SlickEdit 5.0, including
OS/400, VM, VOS, Windows
NT, OS/2, MVS, VMS, Net-
ware, and MacOS.
 Visual SlickEdit 5.0 for Win-
dows also provides the Javadoc
Editor (supports Java, C, C++
and Slick-C), HTML and Java-
Script Beautifier, emulation for
Visual C++, and Print Preview/-
Schemes. It also provides addi-
tional language support for PL/I,
JCL, OS/390 Assembler and
IDL, as well as embedded lan-
guage support for JavaServer.

MicroEdge, Inc.
Price: US$295
Phone: (800) 934-EDIT
Web Site: http://www.slickedit.com
 UCalc Software announced
the release of UCalc Fast Math
Parser 2.0. This new version,
which is faster and slimmer,
includes direct support for
Delphi, C++Builder, Visual
C++, PowerBASIC, and Visual
Basic. Features such as func-
tion callbacks, unlimited def-
inition space, string support,
preparsing, function aliasing,
customizable separators for
international users, extended
precision, and more were also
added.
 A math parser is a tool
that allows programs to evaluate
algebraic expressions that are
defined at run time. This is
something that is frequently
requested in various Usenet pro-
gramming newsgroups. Without
a parser, a program would be
limited to pre-defined formulas.
Whenever a new formula is
added to a program, it would
have to be recompiled. The end
user of such a program would
be stuck with whatever built-in
formulas are available. UCalc
Fast Math Parser makes it pos-
sible for programs to support
dynamic manipulation of math
and string expressions by the
end user.
 This parser is designed in such
a way that third-party add-on
products can easily be created.
It is in a position to spawn
new products, such as standard
libraries of financial, scientific,
and other miscellaneous func-
tions, as well as spreadsheet-type
components, with UCalc Fast
Math Parser serving as the
underlying number-crunching
engine.
 This new version is no longer
an ActiveX DLL. However, not
only is the new DLL faster, but
the distribution of bulky run-
time files is no longer required.

UCalc Software
Price: US$300 for a standard license.
Phone: (305) 233-2604
Web Site: http://www.ucalc.com/mathparser

http://www.slickedit.com
http://www.newriders.com
http://www.ucalc.com/mathparser

3 April 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

combit Releases List & Label 6.0

Delphi Developer’s Guide to
OpenGL

Jon Q. Jacobs
Wordware Publishing, Inc.

ISBN: 1-55622-657-8
Price: US$49.95 (465 pages, CD-ROM)
Web Site: http://www.wordware.com
 combit GmbH announced the
release of List & Label 6.0, a new
version of the company’s database-
independent development tool for
extensive report, label, and form
output functions. The real data
preview can be easily integrated in
intranet/Internet applications.
 List & Label is available in
English and German. Language
kits are available for the designer,
arming it in many different lan-
guages for the end user.
 List & Label is available for all
DLL-capable programming lan-
guages. Special versions that work
with Delphi (VCL) or Visual
Basic (OCX) are also available.
 List & Label 6.0 consists of a
print engine and a form designer.
The data that should be available
for use in the designer is trans-
AutomatedQA Announces Q
ferred by the print engine, inde-
pendent of a specific database.
Virtual variables can also be used.
Hierarchal variables help to
maintain a good overview when
working with various linked
tables of data. Many code pro-
gramming examples are provided
for a range of programming envi-
ronments to help simplify the
programming process.
 The DTP form designer offers
encompassing layout tools, and
many filter and layout options.
These can be used via drag-
and-drop. Special text and list
objects cover many creation needs.
The integrated formula assistant
enables you to undertake complex
calculations and string manipula-
tions directly at run time. The
integration of RTF text, graphics,
Time
and barcodes is also possible, as
well as individual printer control
for the first and following pages.
 The programmable real data pre-
view is additionally available as an
ActiveX control, as well as in a
separate EXE file. This allows the
use of a List & Label preview
directly in an Internet browser.
You can see all information, or you
can print, save, or send it as an
e-mail. The ActiveX control can
also be integrated into your own
Internet applications. With the
compact EXE viewer, you can view
preview files received per e-mail, or
print them when needed.

combit GmbH
Price: Call for pricing.
Phone: +49 7531 90 60 10
Web Site: http://www.combit.com
 AutomatedQA Inc. announced
the release of QTime, its com-
prehensive application testing,
debugging, profiling, and cov-
erage analysis tool for Borland
Delphi, C++Builder, and Micro-
soft Visual C++.
 QTime is specifically designed
for software developers and their
organizations to help deliver
robust, bug-free, and bulletproof
code, while simultaneously reduc-
ing the amount of time spent test-
ing and managing the application
delivery process.
 Once an application is cre-
ated, QTime can help guar-
antee that code will perform
quickly with stability and over-
all application efficiency.
 QTime includes an array of
profilers to help identify specific
problems, including poorly per-
forming application algorithms
(Timing Profiler); global (Sam-
pling Profiler) and low-level
(Hierarchical Profiler) applica-
tion performance issues; unnec-
essary function calls or overly
used functions calls (Hit Count
Profiler); untested sections of
application code and function-
ality (Coverage Profiler); the
trace and flow of code (Trace
Profiler); class usage and its
impact on the long-term viabil-
ity of the code (Class Review);
COM reference leaks (Refer-
ence Count Profiler); and more.
 QTime can give the answers
to common development ques-
tions, such as:
§ What is the slowest area of my

program?
§ What is the most used and/or

executed procedure?
§ Which piece of code never

gets executed during a given
test sequence?
§ What is the slowest procedure

in my program?
§ What is the execution flow of

my program?
§ Have code changes improved

application performance?
§ Which units and or files are

used by my program?
§ Am I linking to my program

units and or files that are not
really used?
§ Which procedures are linked

to my program?
§ How many procedures are

used by my program?
§ How many files and or units

are used by my program?
§ Where in the memory

address space are my proce-
dures loaded?
§ What is the longest procedure
(in procedure source code
lines)?
§ What is the biggest procedure

(in bytes)?
§ What is the biggest unit and

or file in compiled bytes?
§ Which unit contains the

greatest and or lowest number
of procedures?
§ What is the most used class in

my program?
§ Do I free all classes allocated

in my program?
§ What is the binary output

produced by the compiler for
my source code?

 QTime offers a totally open
plug-in architecture so that
others within the software
development community can
participate in enhancing its fea-
ture set.

AutomatedQA Inc.
Price: US$349.99
Phone: (702) 262-0609
Web Site: http://www.totalqa.com

http://www.combit.com
http://www.wordware.com
http://www.totalqa.com

4 April 2000 Delphi Informant Magazine

Object River Announces COM Express 1.0Delphi

T O O L S

New Products
and Solutions
 Object River Information
Technology Inc. announced
COM Express 1.0 for Delphi
with RoseLink, a component-
based n-tier Internet/intranet
application development tool.
 COM Express supports all
tier development of business-
critical Internet/intranet appli-
cation throughout the life-
cycle. It enables the
designer to maintain
database specifications
and create or restructure
physical tables from
Oracle, MSSQL, Sybase,
Informix, DB2, Inter-
Base, etc.
 With COM Express,
developers can create and
design business objects
using simple steps, and
can choose COM, MTS,
COM+ Server with
MIDAS, ADO, or other
solutions.
 It also provides an ASP
page, Internet Express, or
a Delphi thin client form
Fenestra Technologies Offe

Extended Systems Announc
for a presentation tier. All spec-
ifications can be generated into
a Word document and custom-
ized using scripts. The UML
models designed by Rational
Rose can be imported, and
COM Express specifications
can be exported to Rational
Rose.
 All existing client/server
rs Event Journal through Co

es Advantage Database Se
Delphi projects can be con-
verted into n-tier architecture
automatically, and customized
via drag-and-drop.

Object River Information
Technology Inc.
Price: US$2,499 per set.
Phone: 886-2-87805563
Web Site: http://www.objectriver.com
mponent Factory

 Fenestra Technologies Corp.
announced the release of Event
Journal, the first product from
Component Factory, Fenestra’s
software component e-com-
merce Web site.
 Event Journal provides a
simple, non-invasive, and auto-
matic way to hook into and
log all user-interface events (such
as selecting menus, clicking but-
tons, and minimizing windows)
for any Delphi or C++Builder
application. Using Event Journal
is like peering over a user’s shoul-
der as they use an application.
 By tracing events that lead
up to an exception, Event Jour-
nal facilitates quality assurance
and debugging. It also promotes
usability by showing how an
application is actually being
used in the field, so developers
can improve and simplify the
user interface. Event Journal
shows the exact sequence of
events, which provides a better
understanding of how an appli-
cation works.
 Event Journal includes events
r

covering all the components that
ship with Delphi. Developers
can register their own custom
events with the system, as well.
 Event Journal also includes the
Event Viewer for browsing, fil-
tering, exporting, and printing
an event journal log, plus docu-
mentation and examples.

Fenestra Technologies Corp.
Price: US$99
Phone: (301) 721-3912
Web Site: http://www.
componentfactory.com
ver 5.6

 Extended Systems, Inc.
announced the release of
Advantage Database Server
5.6, the newest version of the
company’s client/server DBMS
for shared, networked, stand-
alone, and Internet database
applications.
 Advantage Database Server 5.6
includes Delphi source code with
the Advantage Database Engine
version 2.6 for Delphi. New
features provide greater perfor-
mance and added functionality
for developers building applica-
tions with Borland Delphi, as
well as various other database
programming languages.
 With this release, Extended
Systems also added features
that provide greater function-
ality for developers, such as
SQL UNION support, sharing
instances of components across
threads, and support for Net-
Ware 5 IP and SMP.
 Further enhancements have
been made to existing features
as well, such as JOIN opti-
mization and ORDER BY on
aggregates, which increase the
performance of Advantage
Database Server.

Extended Systems, Inc.
Price: From US$615 for the five-user,
Windows NT and NetWare versions, to
US$7,495 for the unlimited version; client kit
prices range from US$99 to US$299.
Phone: (800) 235-7576 x5030
Web Site: http://www.
AdvantageDatabase.com

http://www.objectriver.com
http://www.componentfactory.com
http://www.componentfactory.com
http://www.AdvantageDatabase.com
http://www.AdvantageDatabase.com

5 April 2000 Delphi Informant Magazine

News

L I N E

April 2000

Baltic Solutions Provides Web Site for Products Built with Delphi

DelphiMag.com Receives Best of the Net Award
 Klaipeda, Lithuania — Baltic
Solutions is offering a new ser-
vice for the Delphi community: a
Web site featuring software prod-
ucts built with Delphi. The site
can be found at http://www.
balticsolutions.com/bwd.
 The purpose of this site is to pro-
vide a consolidated list of all qual-
ity commercial, shareware, and
freeware products that have been
developed using Borland Delphi.
 Anyone with a product they
would like added to the database
can simply submit it to Baltic
Solutions, and it will be added to
the listings.
 Currently, it lists only Delphi-
built products, but Baltic Solutions
is planning to expand it to hold
ICG Announces New Online
software built with C++Builder,
JBuilder, and other Borland tools.
 As of January 11, 2000,
the database contains 175 prod-
ucts, most of which are available
on the Internet. The company
 Publications, Retitles Existin

Inprise UK Sets Up Shop on
encourages people to submit
even in-house products, mod-
ules of larger IT systems, etc.,
as long as they are completed
and can serve as success stories
of Delphi use.
 New York, NY —
DelphiMag.com was selected as
one of the top Delphi program-
ming-related sites on the Internet
by About.com’s Delphi Program-
ming site.
 This is the first-ever About.com
Best of the Net Award for a Del-
phi-related Web site.
 Each month, Zarko Gajic,
About.com Guide to Delphi Pro-
gramming, presents a Best of the
Net Award to the top Delphi pro-
gramming site on the Internet.
 “The DelphiMag.com was
found to be a comprehensive,
credible, and informative site that
simply could not be passed up,”
said Zarko Gajic, About.com
Guide to Delphi Programming.
 For more information about
the award, visit http://delphi.
about.com/compute/delphi/
library/blbon2000.htm.
g Sites

the Web
 Elk Grove, CA — Informant
Communications Group, Inc.
(ICG), publisher of Delphi
Informant Magazine and other
technical magazines, has
announced XML-Zine.com
and SQLServerZine.com for
launches in 2000.
 Visitors to XML-Zine.com
and SQLServerZine.com will be
treated to tips and tricks, how-to
articles, book reviews, product
reviews, third-party product
information, and industry news
columns. These sites will feature
file downloads and a member-
ship-based forum, as well as easy
navigation and a clean, easy-to-
read design.
 In addition to the announcement
of the two new sites, ICG
announced a name change for
two of its most popular online
magazines. DelphiMag.com and
CBuilderMag.com will become
DelphiZine.com and
CBuilderZine.com, respectively,
effective February 1, 2000.
 “In an effort to provide unifor-
mity to our online publications,
ICG has replaced ‘Mag’ with
‘Zine’ in its growing number
of Webzines,” said Mitch Kou-
louris. “This change also enables
each Webzine to stand out as an
individual site — not necessarily
attached to a print magazine.”
 ICG will continue to publish
the award-winning Delphi Infor-
mant Magazine in its current form.
 ICG is recognized as the
leader in publishing quality
technical magazines and Web
sites. ICG produces Microsoft
Office & Visual Basic for Appli-
cations Developer. The world’s
largest corporations, educational
institutions, and government
agencies read ICG’s publications
and Web sites, with readers
in more than 60 countries.
To serve the large Internet
community, ICG has already
launched OfficeVBA.com,
DelphiZine.com,
CBuilderZine.com,
VJInformant.com, and
ComputerBookstore.com, and
anticipates several new IT pro-
fessional sites soon. ICG also
produces in-box product cata-
logs and hosts Microsoft Office/-
VBA conferences worldwide.
 For further information,
please contact:
Joe Krack
Advertising Director
Phone: (916) 686-6610 x27
E-Mail: jkrack@informant.com

Subscriptions:
Customer Service Department
Phone: (916) 686-6610 x10
E-Mail:
circulation@informant.com

Author Inquiries:
Lori Ash
Acquisitions Editor
Phone: (916) 686-6610 x32
E-Mail: lash@informant.com

Press Releases/Product Announce-
ments:
Chris Austria
Products Editor
Phone: (916) 686-6610 x16
E-Mail: caustria@informant.com
 London, England — Inprise
UK, a subsidiary of Inprise Corp.
announced the launch of the
Inprise online shop for customers
in the UK and Ireland. The new
site will allow existing Inprise cus-
tomers to purchase upgrades to
any of the Borland development
tools online and receive products
with documentation directly
through the post. Customers will
be able to access the shop from
http://shop.borland.co.uk.
 By offering direct e-commerce
capability, Inprise is providing
customers with a one-stop shop
for news, developer resources,
and online purchasing through its
Web resources.
 Inprise’s Customer Services
Centre will handle the ful-
fillment of customer orders
from its London-based ware-
house and aims to dispatch
orders within five working days.
All online customers will have
access to existing Inprise
resources, including the Inprise
customer services hotline and
technical support.

http://www.balticsolutions.com/bwd
http://www.balticsolutions.com/bwd
http://delphi/about.com/compute/delphi/library/blbon2000.htm
http://delphi/about.com/compute/delphi/library/blbon2000.htm
http://delphi/about.com/compute/delphi/library/blbon2000.htm
http://shop.borland.co.uk

6 April 2000 Delphi Informant Magazine

On the ’Net
WAP / WML / Wireless Communications / Delphi 5

By Jani Järvinen

<?xml version=
<!DOCTYPE wml
"http://www.wa
<wml>
<card id="welc
 ontimer=
 <timer value
 <p align="ce
 <big>MA's On
 Order Qu
 </p>
</card>
</wml>

Figure 1: An e
WAP! Delphi Does Wireless
Developing WML Applications for Mobile Phones

Delphi is well known for its ability to create HTML files. However, Delphi can also be
used to create WML (Wireless Markup Language) files that are required by the new

WAP (Wireless Application Protocol) services. In this article, you will learn how to create
a real-time, order query system to be used with a WAP phone or a simulator. But we’re
getting ahead of ourselves a bit. Let’s start at the beginning.
x

WAP is the protocol used by the newest WAP-
enabled mobile phones. Many people think that
WAP will bring the Internet to mobile phones.
This isn’t entirely true; after all, you can’t surf
the Web using a WAP phone. What WAP will
do is allow you to retrieve and display special
files developed for WAP-enabled phones. These
files are coded using WML, which is analogous
to HTML. Although rich formatting — such
as nested tables, layers, colors, or different type-
faces — can’t be used in WML, WML does
allow developers to specify simple text formatting,
images, links, and text-entry fields. The reason for
this simplicity is that the current mobile phones
aren’t capable of displaying rich formatting. The
current WAP phones have tiny pixel displays
(about 200 x 200) with about four shades of gray
to represent colors. A new markup language was
necessary for that kind of phone, because HTML
files simply wouldn’t fit on the screen.

The Protocol
WAP services are accessed by standard URLs.
When the user enters the URL of a WAP service
on his or her phone, the phone starts to com-
"1.0"?>
PUBLIC "-// WAPFORUM// DTD WML 1.1// EN"
pforum.org/DTD/wml_1.1.xml">

ome" title="Welcome to" newcontext="true"
"#login">
="30"/>
nter">
-line</big>

ery System

ample of WML version 1.1 code.
municate wirelessly with a WAP gateway. The
gateway is a computer hosted by a mobile ser-
vice operator, such as MCIWorldCom or Sprint.
[At press time, a merger of MCIWorldCom and
Sprint was pending regulatory and shareholder
approval. — Ed.]

The gateway computer processes the mobile
phone’s request and redirects it to the normal Inter-
net using HTTP. There, the service provider’s Web
server answers the request and returns WML data
back to the WAP gateway. Then, the gateway sends
the WML file back to the mobile phone, which
eventually displays the file to the user.

Because HTTP is used to access WML files on
the Internet, WAP technology doesn’t require special
hardware or software from the service provider. Ordi-
nary Web servers, such as Apache and Microsoft
Internet Information Server (IIS), can be configured
to properly serve WML files. Furthermore, a single
Web server can serve HTML and WML pages, just
as the Web server can serve different file types, such
as .gif, .jpeg, .zip, etc. However, a single (virtual)
Web server should be dedicated to WAP, because this
makes it easier for the user to remember the URLs.

The Language
WML is a language with XML syntax. This means
that WML can be written using any text editor,
such as Notepad. Also, WML resembles HTML,
and many of the WML tags, such as , <i>,
<big>, and <a>, have almost the same meaning as in
HTML. Figure 1 shows an example of WML code.

One way WML differs from HTML is that a file isn’t
called a “page.” Rather, a single WML file is called a
deck, and a single deck consists of one or more cards.

Figure 2: The Nokia WAP Toolkit version 1.2. As Java-based
software, it requires JRE 1.2.2.

On the ’Net
Only one card is displayed on the phone’s screen at a time, and a WML
card can display generally only a few lines of text.

Current WAP phones can process fewer than 10 kilobytes of WML
code at a time, so WML code files should be kept small. Also,
because a very limited amount of text will fit on the screen, every
WML card should be kept short. If the data on a WML card doesn’t
fit on the screen, the user is forced to scroll. The best current WAP
services don’t require extensive scrolling, but instead represent the
information in small chunks. The user is then allowed to browse back
and forth among different views of the data.

Browsing is allowed through ordinary hypertext links as well as
something called tasks. Tasks are special commands written with
the <do> WML tag. For example, the tags:

<do type='accept'> <prev/> </do>

would allow the user to browse backward in the WAP service.

To enable more interesting commands than simply browsing back
and forth, WML can be extended with a scripting language called
WMLScript. WMLScript is comparable to JavaScript in the HTML
world, but, of course, it has a much more limited functionality.
Still, WMLScript can be used to validate user input, evaluate simple
equations, or set the WAP browser state.

The Toolkit
To help developers build WAP solutions, Nokia has developed a Java-
based WAP Toolkit that can be used to create, test, and debug WAP
services (see Figure 2).

The WAP Toolkit simulates a real WAP phone and the microbrowser
software on it. The WAP Toolkit allows the loading of any WML file,
from disk or the Internet. After loading the file, the WAP simulator
processes it and displays the results on the screen. The developer can
then use the mobile phone’s buttons to enter text, select options, and
navigate the WAP service.

Navigation can also be done using bookmarks, which the toolkit
supports natively. Actually, bookmarks are only one simple feature
to make the developer’s life easier. For example, the toolkit
allows real-time monitoring of variables created by the WML and
WMLScript code. This is comparable to Delphi’s “watches” sup-
port, although the toolkit provides much more limited functional-
7 April 2000 Delphi Informant Magazine
ity. Nonetheless, the variable view allows the developer to debug
WML code more easily.

As the toolkit allows the developer to load any WML file using
standard HTTP, the simulator is a great way to test interactive
systems running on a Web server. As described previously, a normal
Web server can easily serve WML and WMLScript pages. Of course,
these pages can also be created dynamically.

Delphi 5 provides good support for building Web solutions with its
integrated WebBroker technology. Normally, the WebBroker technol-
ogy is used to create dynamic HTML solutions that run on many
popular Web servers. However, given its flexibility, the WebBroker
technology can also be used to create WML on the fly.

The Delphi Solution
The example program, which is available for download, is an ISAPI
DLL, which runs on IIS 3.0 or later. The detailed workings of ISAPI
DLLs are beyond the scope of this article, but you can find detailed
information about ISAPI on the Internet. One of the best sources is
Microsoft Developer Network (MSDN) at http://msdn.microsoft.com.
For information on debugging ISAPI DLLs, see the sidebar “Debugging
ISAPI DLLs” (on page 9).

By default, ISAPI DLLs return normal HTML code, which can be
created manually, or by using the PageProducer components that ship
with Delphi. Of course, the biggest advantage is that Delphi allows
easy connection to databases, which can then be queried to retrieve
the data inserted into the HTML code. Our example program does
just this; it queries a database, creates WML to contain that informa-
tion, and sends the results to the user. For simplicity, the example
program uses the DBDEMOS database alias that ships with Delphi.

The DBDEMOS database allows access to a fictive customer and order
database of a diving equipment reseller, Marine Adventures. The example
program allows the WAP mobile phone user to view the orders of a
given customer in real time. Given this, the example program is named
“Marine Adventures On-line Order Query System,” or MAOOQS for
short (available for download; see end of article for details).

Logging in to Marine Adventures
When you want to use MAOOQS, enter http://myserver/
login.wml into your WAP phone (or the WAP Toolkit in this case).
The WML browser briefly displays a “Welcome to” screen, then
proceeds to a Login screen. The WML code for the “Welcome to”
and Login cards is shown in Figure 3.

The Login screen contains two input fields, one for the customer ID
and one for the password. These fields are created using the WML
<input> tag, and the name attribute specifies the variable name to
which the data entered by the user gets assigned.

The <do> tag defines a <go> action, which points to the example
program’s ISAPI DLL (by default on the path /scripts/ma_ooqs.dll).
The <go> action uses the standard HTTP post command to send
the data entered by the user to the DLL. Note that the <postfield>
tags automatically instruct the browser to encode the contents of the
$(custid) and $(password) variables for transfer via HTTP.

After the user clicks the Login command, the phone contacts the
example DLL. This causes the DLL to execute the login action
listed in Figure 4. First, the code extracts the custid and password
fields from the Request.ContentFields property. After the data entered

http://msdn.microsoft.com

8 April 2000 Delphi Informant Magazine

<card id="welcome" title="Welcome to" newcontext="true"
 ontimer="#login">
 <timer value="30"/>
 <p align="center">
 <big>MA's On-line</big>

 Order Query System
 </p>
</card>

<card id="login" title="Login" newcontext="true">
 <p>
 Enter your ID:

 <input name="custid" value="1221" maxlength="4"
 format="*N" emptyok="false"/>
 Enter your password:

 <input name="password" value="HI" maxlength="10"
 format="*M" emptyok="true"/>

 <do type="accept" label="Login">
 <go method="post" href="/scripts/ma_ooqs.dll/login">
 <postfield name="custid" value="$(custid)"/>
 <postfield name="password" value="$(password)"/>
 </go>
 </do>
 </p>
</card>

Figure 3: The WML code for the “Welcome to” and Login cards
in the login.wml file.

function TMAWebModule.IsValidCustID(
 CustID, Password: string): Boolean;
begin
 DebugMessage('IsValidCustID:'#13'CustID="' + CustID +
 #13'Password="' + Password +' "');
 Result := False;
 with Customer do begin
 try
 Open;
 if Locate('custno',CustID,[]) then
 if (LowerCase(CustomerState.AsString) =
 LowerCase(Password)) then
 Result := True;
 finally
 Close;
 end;
 end;
end;

procedure TMAWebModule.MAWebModuleLoginAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
var
 CustID, Password : string;
begin
 CustID := Request.ContentFields.Values['custid'];
 Password := Request.ContentFields.Values['password'];
 { Check validity of custid/password. }
 with Response do begin
 if IsValidCustID(CustID,Password) then
 begin
 DebugMessage('CustID/Password is valid.');
 MAWebModuleMainMenuAction(Sender, Request,
 Response, Handled);
 end
 else
 begin
 DebugMessage('Invalid CustID/Password pair.');
 ContentType := MIMETypeWML;
 Content := InvalidIDPageWML;
 end;
 end;
 Handled := True;
end;

Figure 4: The code listing for the Login action and the
IsValidCustID function.

On the ’Net
by the user is sitting comfortably in string variables, the ID and
password are validated by doing a database lookup. The lookup func-
tion IsValidCustID can also be seen in Figure 4.

Because the DBDEMOS database doesn’t contain actual user ID
and password pairs, the example program uses the CustNo field
from the Customer table as the ID, and the State field as the pass-
word. For testing purposes, you can use the following ID/password
pairs: “1221” and “HI”; “1560” and “FL”; and “1680” and “GA.”

Returning WML to the Browser
Normally, WebBroker applications return simple HTML code to
the browser by manipulating the Response object in the OnAction
event handler. The TWebResponse class represented by the Response
parameter contains a Content property, which accepts the HTML
code created by the event handler.

When the user’s browser accepts data, it processes it according to its
MIME type (Multipurpose Internet Mail Extensions). By default, the
MIME type of the TWebResponse class is “text/html,” which specifies
that the data in the Content property is, in fact, HTML code.

However, WAP applications require that the MIME type of the
WML (version 1.1) data is “text/vnd.wap.wml.” For this reason, the
ContentType property of the Response object needs to be changed.
Note that the ContentType property can be changed to any valid
MIME type. For example, changing the property to “image/gif ”
allows the action to return binary .gif image data.

After the correct MIME type has been specified, the action event
handler simply sets the Content property to contain valid WML code.
Because every WML page generated by the application requires a
common header, the example program defines a constant named
WMLHeader to contain this information.

Storing Data Back to the Database
After the user’s login has been validated, the user is redirected to the
Marine Adventures main menu. This menu allows the user to choose
to view customer information or order status. If the user chooses the
customer information hyperlink, the execution branches to the
CustInfoAction method of the MAWebModule Web module (see Figure 5).
Figure 5: The MAWebModule in the Delphi IDE.

Debugging ISAPI DLLs
When debugging ISAPI DLLs, it’s often helpful to display simple mes-
sages on the screen. Of course, IIS is a service, so normal modal forms
can’t be displayed. Still, you can use the Windows MessageBox API
call to display simple text on the screen. All you have to do is include
the MB_TOPMOST and MB_SERVICE_NOTIFICATION flags in the uType
parameter, as shown in the following code:

procedure DebugMessage(S: string);
begin
 MessageBox(0,PChar(S),'My ISAPI DLL',
 mb_OK + mb_Topmost + mb_Service_Notification);
end;

— Jani Järvinen

On the ’Net
First, the code retrieves the CustNo parameter that was sent along
with the POST HTTP command. After locating the customer
specified by the parameter in the Customer table, the code con-
structs WML code to contain three input fields. Initially, these
contain the customer’s ZIP code, city, and state (remember, the
state is the password).

The user is allowed to modify these fields, and by selecting the
“Modify Info” command, the user can store the new values back to
the database. When the user selects this command, the execution goes
to the ModifyCustAction method (see Figure 6).

The code extracts the new customer information from the
Request.ContentFields property, then locates the correct customer
record in the Customer table. Next, the code puts the table into
dsEdit state by calling the Edit method, sets the fields, and finally
calls the Post method.

As you can see, there’s nothing special about storing data back to
a database in Web applications. The most difficult thing is to code
the WML or HTML files so they correctly transfer the information
entered by the user to the Web application.
9 April 2000 Delphi Informant Magazine

procedure TMAWebModule.MAWebModuleModifyCustAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
 var CustID, State, City, Zip : string;
begin
 CustID := Request.ContentFields.Values['custid'];
 State := Request.ContentFields.Values['State'];
 City := Request.ContentFields.Values['City'];
 Zip := Request.ContentFields.Values['Zip'];
 with Response do begin
 ContentType := MIMETypeWML;
 try
 if LocateCustomer(CustID) then
 begin
 DebugMessage('Saving customer data:'#13 +
 'CustID="' + CustID + '"'#13 +
 'State="' + State + '"'#13 +
 'City="' + City + '"'#13 +
 'Zip="' + Zip + '"'#13);
 Customer.Edit;
 CustomerState.AsString := State;
 CustomerCity.AsString := City;
 CustomerZip.AsString := Zip;
 Customer.Post;
 Content := WMLHeader +
 '<card id="modifyok" title="Info ' +
 'Modified" newcontext="true">' + CRLF +
 ' <onevent type="ontimer">' + CRLF +
 ' <go method="post" ' +
 'href="/scripts/ma_ooqs.dll/mainmenu">' +
 CRLF + ' <postfield name="custid" ' +
 'value="' + HTTPEncode(CustID) + '"/>' + CRLF +
 ' </go>' + CRLF + ' </onevent>' + CRLF +
 ' <timer value="30"/>' + CRLF + ' <p>' +
 CRLF + ' Customer info succesfully '+
 'modified.
' + CRLF + ' </p>' + CRLF +
 '</card>' + CRLF + CRLF + '</wml>' + CRLF;
 end
 else
 Content := InvalidIDPageWML;
 finally
 Customer.Close;
 end;
 end;
 Handled := True;
end;

Figure 6: Storing data entered by the user back to the Cus-
tomer table.
Testing Marine Adventures
To test the example application, you need to have a Web server
capable of running ISAPI applications. The example application has
been tested with Microsoft IIS 4.0, but it should also work with other
compatible products or different versions of IIS.

Besides the Web server, you need to download and install the
Nokia WAP Toolkit version 1.2 (at press time, Nokia WAP Tool-
kit 1.3 beta is available for download). This can be downloaded
free from Nokia’s WAP site at http://www.forum.nokia.com/.
The toolkit doesn’t need to be installed on the same computer
as the Web server; all that’s needed is an IP network connection
to the Web server.

When the WAP Toolkit is fired up, it displays a welcome project
(refer to Figure 2). The Toolkit can simulate two mobile phone
models. For the purposes of MAOOQS, select phone model 6110
using the Toolkit | Preferences menu command.

To navigate to the Marine Adventures Login screen, choose the
Load Location command from the Go menu. Type the URL of
the login.wml file: http://localhost/login.wml. Note that before
doing this, the login.wml file needs to be copied to the root of the
Web server’s publish directory. It should go without saying that the
Web server must also be running to successfully run MAOOQS.

Figure 7 displays the corresponding screens involved in testing our
sample Marine Adventures application. After the login.wml file has
been loaded, you will briefly see the “Welcome to” screen shown in
Step 1. In a few seconds, the screen changes automatically to that
shown in Step 2. To enter text into the input fields, click the blue
backslash button on the top-left corner of the phone’s keypad. When
clicking the backslash button, the lower-left corner of the screen on
the phone should read “Edit.” If it instead says “Login,” you’ll need
to click the up or down arrow button, because there’s a time-out
associated with the Edit command.

After successfully clicking the Edit command, the screen changes to
display the integrated text field editor shown in Step 3. The customer
ID field accepts only numbers, so clicking on any of the numbered
buttons adds the corresponding number to the field. If you make a
typing mistake, the slash button on the right can be used to clear
the last character.

The password field accepts characters and numbers, so you have to
click the numbered buttons repeatedly to enter different characters.
For example, to enter the character “B,” you need to press the 1

http://www.forum.nokia.com/
http://localhost/login.wml

On the ’Net

Figure 7: Screens of the Nokia 6110 simulator. The steps indicate
the order of appearance in MAOOQS.
button two times in rapid succession. If you’ve used a mobile phone
to type text, you’ll recognize this style of typing.

Requesting Data from the DLL
After the customer ID and password have been successfully
entered, you should again find yourself at the screen shown in
Step 2. Wait briefly for the “Login” command to become active,
then click the backslash button to select the command. This will
proceed with the login.

Selecting the Login command causes the WAP simulator to
connect to the MA_OOQS ISAPI application on the Web
server’s /scripts/ directory. Of course, this requires that the
ISAPI DLL has been placed on the Web server’s /scripts/ directory
and that the Web server has enough permissions to properly
execute the DLL.

If everything goes smoothly, the WAP simulator receives proper WML
data from the DLL. If an incorrect customer ID and/or password were
entered, the Invalid ID screen appears as shown in Step 4. Otherwise,
the screen displays the Main Menu as shown in Step 5.

The arrow keys on the phone allow you to select either one of the
menu commands. By clicking the backslash button, you can go
to the Customer Info screen (Step 6), or the Order Details screen
(step 9). Pressing the backslash button again allows you to toggle
among these three pages. If you change the customer information
with the Modify Info command shown on the screen in step 7,
you will briefly see the Info Modified screen shown in Step 8.

It’s also worthwhile to note that WAP services usually don’t have a
“log out” command, because such a command isn’t necessary. To go
to a different WAP service, simply enter its URL, just as you would
with your favorite Web browser.

Conclusion
Currently, WAP is the hottest thing happening in the area of mobile
phones and wireless Internet. Although it requires studying new tech-
10 April 2000 Delphi Informant Magazine
nology, only the basic understanding of the technology is required to
implement attractive WAP solutions.

Furthermore, knowledge of existing HTML and HTTP technolo-
gies is of great help, because WML and WMLScript aren’t actually
that different from HTML and JavaScript. Again, Delphi provides
great tools for building WAP solutions, because the WebBroker
technology present in Delphi can be extended to support WAP.

This article shows how WAP solutions can be built with Delphi.
Although all the details can’t be discussed here, you should now
understand how such services work. With some hacking, you should
be able to build your own WAP solutions to support the constantly
growing needs of mobile users. ∆

If you would like more information on this burgeoning technology,
visit the WAP forum (http://www.wapforum.org), Nokia Corp.
(http://www.nokia.com), Ericsson (http://www.ericsson.com), or Sie-
mens (http://www.siemens.com).

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\APR\DI200004JJ.

Jani Järvinen works as a technical support person for Borland development tools.
He also develops custom Internet software.

http://www.wapforum.org
http://www.nokia.com
http://www.ericsson.com
http://www.siemens.com

11 April 2000 Delphi Informant Magazine

DBNavigator
Object Pascal Interfaces / OOP / Polymorphism / Inheritance / Delphi 4, 5

By Cary Jensen, Ph.D.

function TInte
 const IID: T
const
 E_NOINTERFAC
begin
 if GetInterf
 Result :=
 else
 Result :=
end;

function TInte
begin
 Result := In
end;

function TInte
begin
 Result := In
 if Result =
 Destroy;
end;

Figure 1: IUnk
TInterfacedObje
Interfaces Revisited
Part II: Interface References versus Object References

Last month, I began a two-part series on interfaces. As you recall, an interface is a
declaration of methods and properties that can be implemented by a class.
The primary advantage of interfaces is that they
permit assignment compatibility between two or
more objects that implement a common interface.
In other words, interfaces permit two objects to be
treated polymorphically with respect to the meth-
ods and properties of the interface, even though
those objects do not inherit the methods and prop-
erties from a common ancestor. In this respect,
interfaces provide crucial support for polymorphism
in languages, such as Object Pascal, that don’t sup-
port multiple inheritance. Furthermore, from an
object-oriented design viewpoint, interfaces provide
an elegant way to define an object’s behavior inde-
pendently of the object’s implementation.

In Part I, I described the basic rules of interface dec-
laration and class implementation. In this install-
ment, we’ll look at using objects through interface
references, and show how this usage differs from
normal object usage. I’ll also describe the additional
support for interface implementation that was
rfacedObject.QueryInterface(
GUID; out Obj): HResult;

E = HResult($80004002);

ace(IID, Obj) then
0

E_NOINTERFACE;

rfacedObject._AddRef: Integer;

terlockedIncrement(FRefCount);

rfacedObject._Release: Integer;

terlockedDecrement(FRefCount);
0 then

nown methods as implemented by the
ct class.
added to Delphi 4. This support, called “interface
implementation by delegation,” completes Delphi’s
interface model. This article concludes with a dis-
cussion of the two types of interface implementa-
tion by delegation, where I will argue that only one
form of interface implementation by delegation is
safe to use, while the other is inherently dangerous.

Interface References versus Object References
There are significant differences between using
interface references and using object references. The
greatest of these is related to life-cycle management.
Specifically, objects accessed through an interface
are reference counted. When you assign an object
to an interface reference, internally its _AddRef
method is called. Similarly, when the interface ref-
erence is released, the object’s _Release method is
invoked.

All objects that implement interfaces must imple-
ment _AddRef and _Release. This is because all inter-
faces ultimately descend from IUnknown, and (as
discussed in last month’s article), any object that
implements an interface must also implement all
methods declared in that interface’s ancestor inter-
faces. In the implementation of _AddRef, the object
should increment an internal reference counter.
From _Release, this reference counter is decre-
mented. Furthermore, when _Release decrements the
counter to zero, the object is explicitly released by
_Release. An example of this type of implementation
is shown in the IUnknown methods as implemented
by the TInterfacedObject class shown in Figure 1.

Internally, the compiler generates the necessary
call to QueryInterface in response to the assign-
ment of an interface-implementing object to
an interface reference. As shown in Figure 1,
TInterfacedObject.QueryInterface invokes
GetInterface, which is a method of the TObject
class. GetInterface invokes _AddRef on the object
whose interface is queried.

type
 IShowMessage = interface(IUnknown)
 ['{ F8AA90A1-EA2D-11D0-82A8-444553540000 }']
 function ShowMessage:Boolean;
 function GetMessageText: string;
 procedure SetMessageText(Value: string);
 property MessageText: string
 read getMessageText write setMessageText;
 end;
 TYesDefault = class(TInterfacedObject, IShowMessage)
 FMessageText: string;
 function ShowMessage: Boolean;
 function GetMessageText: string;
 procedure SetMessageText(value: string);
 public
 destructor Destroy; override;
 end;
 TNoDefault = class(TInterfacedObject, IShowMessage)
 FMessageText: string;
 function ShowMessage: Boolean;
 function GetMessageText: string;
 procedure SetMessageText(value: string);
 public
 destructor Destroy; override;
 end;

Figure 2: Declaring an interface and two classes that implement it.

DBNavigator

function TYesDefault.GetMessageText: string;
begin
 Result := FMessageText;
end;

procedure TYesDefault.SetMessageText(value: string);
begin
 FMessageText := Value;
end;

function TYesDefault.ShowMessage;
begin
 if MessageBox(Application.Handle, 'Continue?',
 PChar(FMessageText),
 MB_OKCANCEL+MB_DEFBUTTON1) <> IDOK then
 Result := False
 else
 Result := True;
end;

destructor TYesDefault.Destroy;
begin
 Dialogs.ShowMessage('YesDefault: Goodbye');
 inherited;
end;

function TNoDefault.GetMessageText: string;
begin
 Result := FMessageText;
end;

procedure TNoDefault.SetMessageText(value: string);
begin
 FMessageText := Value;
end;

function TNoDefault.ShowMessage;
begin
 if MessageBox(Application.Handle, 'Continue?',
 PChar(FMessageText),
 MB_OKCANCEL+MB_DEFBUTTON2) <> IDOK then
 Result := False
 else
 Result := True;
end;

destructor TNoDefault.Destroy;
begin
 Dialogs.ShowMessage('NoDefault: Goodbye');
 inherited;
end;

Figure 3: Implementing TYesDefault and TNoDefault.
The compiler also generates calls to _Release. There are three situ-
ations in which the compiler generates the _Release invocation.
These are:
§ The interface reference is assigned a value of nil.
§ The interface reference is re-assigned a different interface-

implementing object.
§ The interface reference goes out of scope.

As you can see in Figure 1, when _Release is invoked and the
reference count drops to zero, the interface object’s destructor is
invoked automatically.

This behavior, which only occurs when using interface references, is
substantially different from the behavior observed when object refer-
ences are used. Using object references, the life cycle of objects is
managed in one of two ways: Either you rely on the TComponent
garbage collection, in which the Owner of an object (the one passed
to the TComponent.Create method) destroys all existing owned objects
(i.e. those objects referenced in the owner’s Components array property)
as part of its own destruction, or you explicitly call Free (or Release
for TForm instances). If the object reference is not a TComponent
descendant, then you must explicitly call Free to release the object.

These differences in life-cycle management result in substantially
different-looking code, depending on whether you’re using interface
references or object references. These differences are found in the
sample application named DEMOINT (available for download; see
end of article for details). You’ll want to download this file and
inspect the entire unit for the main form. For brevity, I’m only going
to focus on parts of this file at any given time.

First, let’s consider the declaration of one interface and two classes that
each implement the interface. For clarity, I have kept this interface and
its implementing class declarations very simple, as shown in Figure 2.

The first thing you’ll notice is that the IShowMessage interface is associ-
ated with a large number. This number is referred to as the interface’s
globally unique identifier, or GUID for short (pronounced “goo-id”).
This is a 128-bit number generated through a call to a Windows API
12 April 2000 Delphi Informl
function, which assures that this number will be absolutely unique,
even across different computers. The purpose of the GUID is to
uniquely identify this interface when it is registered for use with COM
(Component Object Model) in the Windows registry.

Object Pascal doesn’t require you to generate and register a GUID for
interfaces you create. However, in case you decide to use the interface
as a COM interface sometime in the future, it doesn’t hurt to assign
a GUID. And Delphi’s editor makes generating the GUID very easy.
Simply press CSG to insert a GUID into your source code.

The remainder of this interface is pretty simple. It declares a single
property, named MessageText, and three methods. Two of these three
methods are accessor methods for the property.

As you learned in Part I of this series, interfaces do not implement
methods. This is the responsibility of any class that implements the
interface. In Figure 2, both the TYesDefault and TNoDefault classes

Figure 4: The main form of the DEMOINT project.

DBNavigator

procedure TForm1.Button1Click(Sender: TObject);
var
 YesDefault1: TYesDefault;
 NoDefault1: TNoDefault;
begin
 YesDefault1 := TYesDefault.Create;
 NoDefault1 := TNoDefault.Create;
 YesDefault1.SetMessageText('This is a TYesDefault');
 YesDefault1.ShowMessage;
 NoDefault1.SetMessageText('This is a TNoDefault');
 NoDefault1.ShowMessage;
 YesDefault1.Free;
 NoDefault1.Free;
end;

Figure 5: The OnClick event handler for the Use Objects button.

procedure TForm1.Button2Click(Sender: TObject);
var
 IntVar: IShowMessage;
begin
 IntVar := TYesDefault.Create;
 IntVar.MessageText := 'This is a TYesDefault';
 IntVar.ShowMessage;
 IntVar := TNoDefault.Create;
 IntVar.MessageText := 'This is a TNoDefault';
 IntVar.ShowMessage;
end;

Figure 6: The OnClick event handler for the Use Interfaces button.
implement the IShowMessage interface. Because neither TYesDefault
nor TNoDefault inherit the methods of the IShowMessage interface,
both classes must explicitly declare and implement these methods.
Notice, however, that the MessageText property is not declared in
either TYesDefault or TNoDefault. As mentioned in Part I, classes
that implement an interface are not required to explicitly declare
the interface’s properties. Doing so is entirely optional, and I opted
not to in this case. However, because these classes must implement
the accessor methods GetMessageText and SetMessageText, and these
methods require the storage of the text of the message, it was neces-
sary to declare a member field, named FMessageText in this case, to
hold the value of the message in these class instances.

Although these two classes look nearly identical, they are different.
The difference in this case is found in their implementations of the
ShowMessage method. Figure 3 shows the implementations for both of
these classes. I’ve also overridden the destructors of both of these classes,
so we can see the results of life-cycle management, and compare how
this differs between interface references and object references.

As mentioned earlier, the only real difference between the imple-
mentation of these two classes is found in the ShowMessage
method. When TYesDefault.ShowMessage is invoked, a dialog box
with a default OK button is displayed. By comparison, when
TNoDefault.ShowMessage is invoked, the Cancel button is the default
button. This single difference permits us to tell which implementa-
tion of the interface is being invoked by noticing which button on the
displayed dialog box is the default button.

Let’s now turn our attention to the use of these two objects. The
DEMOINT main form contains four buttons (see Figure 4). Begin
by considering the first two, labeled Use Objects and Use Interfaces,
respectively. Figure 5 is the OnClick event handler associated with the
button labeled Use Objects.

Here we see the traditional way to use an instance of a class. The class
constructor is called, its methods are invoked, and then it is freed.
Notice that we use the accessor methods to set the text of the dialog
box’s message. We could not use the MessageText property in this case,
because that property is not a property of either the TYesDefault or
TNoDefault class.

Let’s compare this to the code associated with the button labeled Use

Interfaces. Figure 6 shows the code attached to this button’s OnClick
event handler.

Here we’re using a variable of type IShowMessage — an interface
reference. Furthermore, we’re able to use the MessageText property
13 April 2000 Delphi Informant Magazine
to set the text of the displayed message, because the IShowMessage
interface has this property. Other than these two differences, there
are two other important differences between this code segment and
the preceding one. First, a single variable, of type IShowMessage, was
used to reference both object instances. In other words, both the
TYesDefault and the TNoDefault instances are assignment compatible
with the IShowMessage reference.

The second important difference is that these objects were not
explicitly freed. Instead, their life cycle was managed by the inter-
face reference. You’ll see this if you download and run this project.
When you click the Use Interfaces button, you’ll first see a Yes-
Default dialog box. Once you click one of the buttons on this
dialog box, you’ll see a message displayed by the destructor of the
YesDefault instance. This destructor is invoked when the
TNoDefault instance is assigned to the IShowMessage variable. In
other words, when the interface reference is directed to another
interface-implementing object, the first reference was released,
resulting in its implicit destruction. After the destructor’s message,
an instance of the NoDefault dialog box is displayed. Again, after
clicking a button on this dialog box, you’ll see the message dis-
played by the destructor of the NoDefault instance. In this case, this
occurs because the IShowMessage variable went out of scope.

Interface Implementation by Delegation
With Delphi 4, an important new mechanism for implementing
interfaces was introduced. Rather than having to explicitly declare
and implement each method of the interface, you could declare a
property of either a class type or an interface type and delegate
the implementation of the interface to that property. When the
implementing object is assigned to the interface reference, it is the
object assigned to the interface property that is provided to the
interface reference.

At first this addition to interface support might sound unnecessary,
but it’s actually very useful. An example will demonstrate why. Imag-
ine that you have 20 different objects that must implement a particu-
lar interface. Assuming these objects do not inherit the methods of

DBNavigator
the interface, in Delphi 3 it was necessary for each of the implement-
ing classes to declare and implement the methods of the interface.
Assuming that each of the 20 classes implemented the interfaces in
exactly the same way, you have 20 different copies of the same code.
If you decide that the common implementation must be changed,
you have to change your code in 20 different classes.

Interface implementation by delegation solves this problem. Instead
of declaring and implementing the interface in each of the 20 classes,
you can create a single class that implements the interface. Then,
in each of the 20 classes that must implement this same interface,
you declare a property that can hold a reference to the single class
you initially created. In other words, all 20 classes can share the
implementation provided for by your single class. If you later need
to change how the interface is implemented, you simply return to
14 April 2000 Delphi Informant Magazine

procedure TForm1.Button3Click(Sender: TObject);
var
 IntVar: IShowMessage;
 ClassProperty1: TClassProperty;
begin
 ClassProperty1 := TClassProperty.Create(Self);
 ClassProperty1.MyMessage := TYesDefault.Create;
 IntVar := ClassProperty1;
 IntVar.MessageText := 'Message Text';
 IntVar.ShowMessage;
 ShowMessage('About to free the interface');
 IntVar := nil;
 ShowMessage(
 'Interface freed. About to release the object');
 ClassProperty1.Free;
 ShowMessage('Object freed');
end;

procedure TForm1.Button4Click(Sender: TObject);
var
 IntVar: IShowMessage;
 InterfaceProperty1: TInterfaceProperty;
begin
 InterfaceProperty1 := TInterfaceProperty.Create(Self);
 InterfaceProperty1.MyMessage := TNoDefault.Create;
 IntVar := InterfaceProperty1;
 IntVar.MessageText := 'Message Text';
 IntVar.ShowMessage;
 ShowMessage('About to free the interface');
 IntVar := nil;
 ShowMessage(
 'Interface freed. About to release the object');
 InterfaceProperty1.Free;
 ShowMessage('Object freed');
end;

Figure 8: The OnClick event handlers for the class-type interface
and interface-type interface buttons.

type
 TClassProperty = class(TComponent, IShowMessage)
 private
 FMyMessage: TYesDefault;
 public
 property MyMessage: TYesDefault
 read FMyMessage write FMyMessage
 implements IShowMessage;
 end;
 TInterfaceProperty = class(TComponent, IShowMessage)
 private
 FMyMessage: IShowMessage;
 public
 property MyMessage: IShowMessage
 read FMyMessage write FMyMessage
 implements IShowMessage;
 end;

Figure 7: The TClassProperty and TInterfaceProperty classes.
your single class and change its implementation. Because all 20 classes
delegate the implementation to this single class, their implementation
is automatically updated.

As already mentioned, there are two types of properties you can use
to implement an interface by delegation: class-type properties, and
interface-type properties. Furthermore, when you declare a property
to implement an interface by delegation, the property syntax must
include the implements directive, followed by the name of the inter-
face the property is implementing.

The DEMOINT project contains two classes that implement the
IShowMessage interface by delegation. The first class, TClassProperty,
implements the interface using a class-type property. The second,
named TInterfaceProperty, implements the IShowMessage interface
using an interface property. The code in Figure 7 shows the declara-
tion of these two classes.

Notice that these class declarations include the name of the IShowMessage
interface following the ancestor class, just as if each class was going
to declare and implement the methods of the IShowMessage interface.
However, the implementation of this interface is delegated to a prop-
erty, named MyMessage, in both classes. Notice further that the syntax
of the property declarations includes the implements directive followed
by the IShowMessage interface name. This is required so the compiler
can tell that you want the object assigned to this property to provide
the implementation of the IShowMessage interface.

Both of these class declarations also include a private member
field. This field is used to hold a reference to the object assigned
to the associated property using direct access. In the case of
the TClassProperty.MyMessage property, this member field is of a
class type. By comparison, the TInterfaceProperty.MyMessage uses a
member field of type IShowMessage.

The use of these two classes is demonstrated by the buttons on
the DEMOINT main form labeled Object with class type interface

property and Object with interface type interface property, respectively.
Figure 8 shows the code associated with the OnClick event han-
dlers of these two buttons.

For both of these event handlers, the first line creates an instance
of the object that implements the interface through delegation, and
the second line assigns an object to the interface property. In reality,
the object that implements the interface would likely be assigned to
the interface property in the constructor of the class that implements
through delegation. For example, it would have been just as valid,
and arguably more appropriate, to assign the TYesDefault instance to
the MyMessage property of the TClassProperty instance from within
the TClassProperty constructor.

The remaining statements in these event handlers are also similar. An
object is assigned to the interface variable in the third statement, after
which this reference is used to assign the message text and show the
message. If you run this example, you’ll see that clicking the Object

with class type interface property button displays the implementation
of the TYesDefault class, and clicking the Object with interface type

interface property button displays the implementation provided for by
the TNoDefault class.

The remaining five statements in each of these event handlers have been
added to document the life cycles of the objects assigned to the interface-
implementing properties. This is described in the following section.

DBNavigator
Comments on Interface Implementation by Delegation
At first glance, there appears to be little difference between these two
types of interface delegation. Both make use of an external object
to provide for the implementation of the interface. However, there
is a very big difference, one that leads me to strongly advise against
delegating interface implementation to a class-type property.

The problem can be seen clearly if you compare the sequence of dialog
boxes displayed by clicking on the two interface delegation buttons
on the DEMOINT main form. Specifically, if you click Object with

class type interface property, you’ll see the following dialog boxes, in this
order: the TYesDefault ShowMessage dialog box, the dialog box indicat-
ing that the interface is about to be freed, the TYesDefault destructor
dialog box, the dialog box indicating the object is about to be freed,
and finally the dialog box indicating that the object was freed.

Compare this sequence to the following, which occurs when you
click on the button labeled Object with interface type interface property:
the TNoDefault ShowMessage dialog box, followed by the dialog box
indicating that the interface is about to be freed, then the dialog box
indicating the object is about to be freed, followed by the TNoDefault
destructor dialog box, and finally the dialog box indicating that the
object was freed.

The difference is that freeing the interface variable caused the object
assigned to the TClassProperty.MyMessage property to be released, but
had no effect on the object assigned to the TInterfaceProperty.MyMessage
property. The object assigned to TInterfaceProperty.MyMessage did not
get released until the TInterfaceProperty instance was freed. It is this latter
behavior that is correct.

The basic problem with the behavior when you use class-type
properties is that you cannot reliably use the interface of an object
that implements the interface using a class property, unless you
first test to see if an object is still assigned to that property. Having
previously assigned an object to the property is not sufficient,
because an interface reference may have subsequently destroyed
the object. In contrast, once an object has been assigned to an
interface-type property that implements an interface, it is likely
to still be there unless you’ve explicitly destroyed it from within
your object.

The explanation for the difference in behaviors when using class-
type versus interface-type properties is that the class that implements
an interface using an interface-type property holds an internal refer-
ence to the object assigned to the property. In the TInterfaceProperty
class, this reference is the FMyMessage member field. By comparison,
unless you go to the extra trouble of adding an interface reference
to the member field of a class-type property, the only reference
counting will be provided by external interface references. Once
this reference is released, the object assigned to the property is
destroyed, rendering the implementing class unusable, from the
perspective of the interface.

Interfaces and COM
If Delphi introduced interfaces for the purpose of supporting COM,
you might be inclined to wonder why this series has been able to
discuss interfaces with little discussion of COM. The answer is that
interfaces are a valuable tool for treating objects polymorphically. In
short, if you know that an object supports a given interface, you
really know all you need to know about it in order to invoke the
methods of that interface. This is important in COM because the
objects you work with are often of an unknown origin.
15 April 2000 Delphi Informant Magazine
COM is a binary standard, meaning that the objects you work
with can be compiled using any compiler, not just Delphi’s. In
fact, when using COM, the objects you work with are normally
compiled by something other than Delphi, such as Visual C++.
But that’s okay. As long as you use standard OLE types for your
parameters, your Delphi applications will be able to communicate
with these objects, invoking their behaviors and reading and writ-
ing their properties.

But interfaces are just one aspect of COM. There are many other
issues, including how to provide support for a variety of threading
models supported by COM servers, OLE types, and type libraries,
among others. Consequently, I will not say more about COM in
this article. For more information on COM, OLE automation,
and ActiveX, refer to other articles, past and future, in Delphi
Informant Magazine.

Interfaces and Delphi’s Open Tools API
At the beginning of Part I of this series, I mentioned that one
reason that interfaces deserved another look is Delphi’s own
increased reliance on them. Specifically, with each new version
of Delphi, more and more of its own behavior is defined by
interfaces. A good example of this is Delphi’s Open Tools API.
In Delphi 5, more than ever, creating your custom extensions
to Delphi’s IDE requires that you create classes that implement
specific interfaces. For example, to add a custom key binding to
Delphi’s editor, you create and register a class that implements the
IOTAKeyboardBinding interface (OTA stands for Open Tools API).

Conclusion
Interfaces provide you with the ability to treat objects polymorphi-
cally in the absence of inheritance. In other words, an interface
defines the capabilities of an object without saying anything about
how those capabilities are implemented. This is the essence of plug-
gable software, where one object asks for another object that imple-
ments a specific interface. How that interface is implemented is
completely irrelevant. As long as the two objects understand the
interface, they can work together. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\APR\DI200004CJ.

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database
development company. He is co-author of 17 books, including Oracle JDeveloper
[Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill, 1998], and
Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a Contributing Editor of
Delphi Informant Magazine, and an internationally respected trainer of Delphi and
Java. For more information, visit http://www.jensendatasystems.com, or e-mail
Cary at cjensen@compuserve.com.

http://www.jensendatasystems.com

16 April 2000 Delphi Informant Magazine

OP Tech
RTTI / Sets / Strings / Method Overloading

By Ray Lischner
Sets to Strings, and Back
Employing Sets, Strings, and Run-time Type Information

A frequently asked question is: “How can I store a font style in the registry?” You
have a number of choices; one approach is to convert the style to a string and

store the string. You’ll then need to convert the string back to a font style when loading
the information from the registry. It’s easy to hard-wire a couple of functions to do this
for font styles, but it would be more useful to write general-purpose subroutines that
work for any set. This article shows you how to take advantage of Delphi’s Run-time
Type Information (RTTI) to write functions that do just that: convert any set to a string
and back again.
About RTTI
RTTI lies at the heart of Delphi’s integrated
development environment. The difference
between a public property, method, or field and
a published one is that published declarations
have RTTI information that is available at run
time. The Object Inspector uses RTTI for pub-
lished properties to help it get and set property
values. The form designer uses RTTI for pub-
lished fields to define a field for each component
you drop on a form.

RTTI also lets Delphi manage the lifetime of
strings, dynamic arrays, interfaces, and variants.
Even if you declare a dynamic array of strings in
a record, for example, Delphi can navigate RTTI
for the record, array, and string types to decide
when it must initialize and finalize the strings and
the dynamic array.

A set’s RTTI contains a pointer to RTTI for the
type that makes up the components of the set —
usually an enumerated type, but it can also be an
integer or character type. This article examines
in depth RTTI for a set type. If you have the
Figure 1: Bit representation of TFontStyles.

unused

Bit 7

unused unused unused fs

unused

Bit 15

unused unused unused unused 10 9 8

Bit 8

Byte 1

B

Figure 2: Bit representation of an integer set.
Professional or Enterprise Edition, you can read
the source code in \Source\Vcl\TypInfo.pas; if
you have the Standard Edition, read the inter-
face in \Doc\TypInfo.int. Either file contains the
information you need to make sense of RTTI.

A type’s RTTI has two parts: type information
and type data. The type information is stored
in a TTypeInfo record, which contains a type
kind and the type’s name. The type kind is an
enumeration of the various kinds of types in
Delphi: tkInteger, tkChar, tkEnumeration, tkSet,
and so on. The type kinds are self-explanatory.
The built-in TypeInfo function returns a pointer
to a type’s TTypeInfo record.

TTypeData stores the type data in a variant
record. Each type kind refers to different mem-
bers of the record. For example, tkSet has a
pointer to a PTypeInfo for the component type.
Ordinal types have the MinValue and MaxValue
members to store the range of values defined
for the type. See the declaration in TypInfo.pas
(or TypInfo.int) for the details of other types’
data. If an ordinal type is declared as a subrange
StrikeOut

Bit 3

fsUnderline fsItalic fsBold

Bit 0

Byte 0

7

it 7

unused unused unused unused unused unused unused

Bit 0

17 April 2000 Delphi Informant Magazine

OP Tech

const
 MaxSet = 255; // Largest ordinal value in a Delphi set.
 BitsPerByte = 8;
type
 TSet = set of 0..MaxSet;

function SetToString(Info: PTypeInfo; const Value):
 string; overload;
begin
 Result := SetToString(Info, Value, ',');
end;

function SetToString(Info: PTypeInfo; const Value;
 const Separator: string): string; overload;
begin
 Result := SetToString(Info, Value, Separator, '[', ']');
end;

function SetToString(Info: PTypeInfo; const Value;
 const Separator, Prefix, Suffix: string):
 string; overload;
var
 CompInfo: PTypeInfo;
 CompData: PTypeData;
 SetValue: TSet absolute Value;
 Element: 0..MaxSet;
begin
 CompInfo := GetTypeData(Info)^.CompType^;
 CompData := GetTypeData(CompInfo);
 Result := '';
 for Element := CompData.MinValue to CompData.MaxValue do
 begin
 if Element in SetValue then
 if Result = '' then
 Result := Prefix + GetEnumName(CompInfo, Element)
 else
 Result := Result + Separator +
 GetEnumName(CompInfo, Element);
 end;
 if Result = '' then
 Result := Prefix + Suffix
 else
 Result := Result + Suffix;
end;

Figure 3: First, simple implementation of SetToString.

// Convert an ordinal value to a string. The ordinal value
// can be an integer, enumerated value, or a character.
function OrdToString(Info: PTypeInfo; Value: Integer):
 string;
resourcestring
 sCvtError =
 'OrdToString: type kind must be ordinal, not %s';
const
 AsciiChars = [32..127]; // Printable ASCII characters.
begin
 case Info.Kind of
 tkInteger:
 Result := IntToStr(Value);
 tkChar, tkWChar:
 if Value in AsciiChars then
 Result := '''' + Chr(Value) + ''''
 else
 Result := Format('#%d', [Value]);
 tkEnumeration:
 Result := GetEnumName(Info, Value);
 else
 raise EConvertError.CreateFmt(sCvtError,
 [GetEnumName(TypeInfo(TTypeKind), Ord(Info.Kind))]);
 end;
end;

Figure 4: OrdToString converts any ordinal value to a string.
of another type, the type data’s BaseType member points to the
PTypeInfo for the base enumerated type.

Note that the pointers in TypeInfo all use two levels of indirection.
For example, a TTypeData member might have the type PPTypeInfo
instead of PTypeInfo (that is, pointer to pointer to TTypeInfo instead of a
simple pointer to TTypeInfo). If you use packages, the type information
for different types can reside in different packages. The extra level of
pointers makes it easy for Windows to load the package DLL at any
starting address and fix up RTTI pointers.

Sets in Delphi
Delphi stores a set value as a bit mask. A set can contain up to
256 elements, which requires a bitmask with 256 bits. At eight
bits per byte, that means the largest possible set occupies 32 bytes.
Delphi uses only as many bytes as it needs, so a set of up to eight
elements usually fits in a single byte. For example, TFontStyles is a
set with up to four members, occupying bits 0 through 3. Delphi
ignores the most significant four bits in the byte because they aren’t
needed. Figure 1 illustrates the arrangement of bits in a byte.

I wrote “usually” in the previous paragraph because sets of integers or
characters aren’t always aligned on byte boundaries. Delphi stores sets
so that a member’s bit position is always the same for a given ordinal
value. In other words, ordinal value 10 always sits at the third bit
from the right in a byte. If the set type is, say, “set of 7..10”, Delphi
stores that set in two bytes, even though it fits in only four bits. The
last bit of the first byte stores member 7, and the first three bits of
the next byte store members 8, 9, and 10, as shown in Figure 2. This
representation of sets results in compact storage and code, and makes
it easy to assign set values and test set membership.

This representation for sets also makes it possible to write
general-purpose subroutines that can handle any set. The
subroutines need RTTI for the set type. The set type’s
component type specifies the MinValue and MaxValue for the
ordinal type, and those values dictate the bitwise representation
for the set. Delphi restricts the members of a set to ordinal values
in the range 0..255, which means you can treat any set as a set
of integers where the integers are a subrange of 0..255. For
example, TFontStyles is equivalent to a set of 0..3, where 0 is the
ordinal value of fsBold, 1 is fsItalic, and so on. The functions
described in this article rely on this trick: Every set is treated as
a set of integers, using RTTI to learn the true enumerated literal
for each set member.

SetToString Function
The first — and easier — task is to convert a set to a string.
The SetToString function requires the PTypeInfo pointer for the set
type and the set value. To write a subroutine that takes any set
as an argument, it must use an untyped parameter to get around
Delphi’s strict type checking. The function’s header is as follows:

function SetToString(Info: PTypeInfo; const Value): string;

To give the caller control over the formatting, overloaded functions
take additional parameters for prefix, separator, and suffix strings.
(Note that SetToString uses overloaded functions instead of default
parameter values. When you have string parameters, you should
use overloaded subroutines. Otherwise, every use of the default
string parameter results in a separate copy of the string. Using
overloaded subroutines avoids the additional overhead of multiple
copies of the same string.)

OP Tech
SetToString is a fairly simple function; it iterates over all possible mem-
bers of the set, tests the bit for that member, and adds the member’s
literal representation to the Result string if the member is present in the
set. Figure 3 shows a first draft of this overloaded function.
18 April 2000 Delphi Informant Magazine

resourcestring
 sNotASet = 'SetToString: argument must be a ' +
 'set type; %s not allowed';
const
 // Mask to force the minimum set value to be
 // a set element on a byte boundary.
 ByteBoundaryMask = not (BitsPerByte - 1);

function SetToString(Info: PTypeInfo; const Value;
 const Separator, Prefix, Suffix: string): string;
var
 CompInfo: PTypeInfo;
 CompData: PTypeData;
 SetValue: TSet absolute Value;
 Element: 0..MaxSet;
 MinElement: 0..MaxSet;
begin
 if Info.Kind <> tkSet then
 raise EConvertError.CreateFmt(sNotASet,
 [GetEnumName(TypeInfo(TTypeKind), Ord(Info.Kind))]);
 CompInfo := GetTypeData(Info)^.CompType^;
 CompData := GetTypeData(CompInfo);
 Result := '';
 MinElement := CompData.MinValue and ByteBoundaryMask;
 for Element := CompData.MinValue to CompData.MaxValue do
 begin
 if (Element - MinElement) in SetValue then
 if Result = '' then
 Result := Prefix + OrdToString(CompInfo, Element)
 else
 Result := Result + Separator +
 OrdToString(CompInfo, Element);
 end;
 if Result = '' then
 Result := Prefix + Suffix
 else
 Result := Result + Suffix;
end;

Figure 5: Final version of SetToString.

procedure
StringToSet(const Str: string;
 Info: PTypeInfo; var Value);
var
 CompInfo: PTypeInfo;
 CompData: PTypeData;
 SetValue: TSet absolute Value;
 MinValue, MaxValue: Integer;
begin
 if Info.Kind <> tkSet then
 raise EConvertError.CreateFmt(sNotASet,
 [GetEnumName(TypeInfo(TTypeKind), Ord(Info.Kind))]);
 CompInfo := GetTypeData(Info)^.CompType^;
 // Initialize SetValue to an empty set. Only initialize
 // as many bytes as are present in the set.
 CompData := GetTypeData(CompInfo);
 MinValue := CompData.MinValue and ByteBoundaryMask;
 MaxValue := (CompData.MaxValue + BitsPerByte - 1) and
 ByteBoundaryMask;
 FillChar(SetValue,(MaxValue-MinValue) div BitsPerByte,0);
 if CompInfo.Kind in [tkChar, tkWChar] then
 StringToCharSet(Str, CompData, SetValue)
 else
 StringToEnumSet(Str, CompInfo, CompData, SetValue);
end;

Figure 6: StringToSet divides its work between StringToEnumSet
and StringToCharSet.
The GetEnumName function is one of Delphi’s standard functions
in the TypeInfo unit. It takes an ordinal value, and returns a string
literal. If the type is an enumerated type GetEnumName returns the
enumerated literal. If the type is an integer type, the function calls
IntToStr to convert the number to a string.

If the set type is a set of characters, though, GetEnumName doesn’t work
correctly. It doesn’t test the type kind, so the result is unpredictable —
usually an access violation. To solve this problem, write a function that
does the same thing, but support characters, integers, and enumerations.
Figure 4 shows the OrdToString function.

You may have noticed another problem with SetToString. Consider the
case of an integer or character set whose first member doesn’t have ordinal
value 0. The function tests the wrong bit in the set. To handle this case,
the function must find the correct bit position. If the first member of the
set falls after a byte boundary, Delphi saves space and doesn’t store the
initial empty bytes. SetToString must handle this case too.

Finally, the function checks the type info to make sure the type is a
set type (type kind of tkSet). If not, it raises an exception. Figure 5
lists the final version of SetToString.

StringToSet Function
More difficult is the task of converting a string to a set. The
string might use any prefix, suffix, and separator characters;
it might contain space characters. The string might not be cor-
rectly formed. A string can contain enumerated literals, integers,
or characters. Characters have multiple representations, as well:
quotes ('x'), ordinal value (#13), or control character (^M).

Characters are sufficiently different from integers and enumerations,
so two functions are needed. StringToSet calls StringToEnumSet or
StringToCharSet, depending on the type kind of the set’s component
type. Before it converts the string, though, it must initialize the set
to empty. The size of the set’s value is independent of the type, so
StringToSet initializes the set to empty by calling FillChar. The size of
the set depends on the limits of the component type, which must be
rounded to byte boundaries. Figure 6 shows the StringToSet function.

Starting with StringToEnumSet (because it’s simpler), the first task is
to skip over leading white space characters, then look for a prefix
character. Any non-alphanumeric character is allowed as a prefix,
but it must be only one character. SetToString allows any string,
but StringToSet must be a little more restrictive to keep it manage-
able. Then, the function skips more white space and collects an
alphanumeric token.

The TypeInfo unit has the GetEnumValue function to convert an
enumerated literal to its ordinal value. Like GetEnumName, it doesn’t
handle character types. StringToEnumSet doesn’t handle sets of char-
acters either, so StringToEnumSet can call GetEnumValue. GetEnum-
Value raises an EConvertError exception if the type is an integer type
and the string is not a valid integer. It returns -1 for an enumerated
type when the name is not valid for the type. StringToEnumSet checks
for a negative value indicating an error from GetEnumValue. It also
checks to ensure the ordinal value is in range for the set’s type. For
any error, it raises an EConvertError exception.

StringToEnumSet must find the correct bit position in the set, in
the same manner as SetToString. Once it finds that position, it sets
the bit to one and continues its loop. The next time through the
loop, a non-alphanumeric character can be a separator between

const
 WhiteSpace = [#0..' '];
 Alphabetic = ['a'..'z', 'A'..'Z', '_'];
 Digits = ['0'..'9'];
 AlphaNumeric = Alphabetic + Digits;
resourcestring
 sInvalidSetString =
 'StringToSet: %s not a valid literal for the set type';
 sOutOfRange =
 'StringToSet: %0:d is out of range [%1:d..%2:d]';

procedure SkipWhiteSpace(const Str: string;
 var I: Integer);
begin
 while (I <= Length(Str)) and (Str[I] in WhiteSpace) do
 Inc(I);
end;

procedure StringToEnumSet(const Str: string;
 CompInfo: PTypeInfo; CompData: PTypeData;
 var Value: TSet);
var
 ElementName: string;
 Element: Integer;
 MinElement: Integer;
 Start: Integer;
 I: Integer;
begin
 MinElement := CompData.MinValue and ByteBoundaryMask;
 I := 1;
 while I <= Length(Str) do begin
 SkipWhiteSpace(Str, I);
 // Skip the prefix, separator, or suffix.
 if (I <= Length(Str)) and
 not (Str[I] in AlphaNumeric) then
 Inc(I);
 SkipWhiteSpace(Str, I);
 // Remember the start of the set element,
 // and collect the entire element name.
 Start := I;
 while (I<=Length(Str)) and (Str[I] in AlphaNumeric) do
 Inc(I);
 // No name, so skip to the next element.
 if I = Start then
 Continue;
 ElementName := Copy(Str, Start, I-Start);
 Element := GetEnumValue(CompInfo, ElementName);
 if Element < 0 then
 raise EConvertError.CreateFmt(sInvalidSetString,
 [AnsiQuotedStr(ElementName, '''')]);
 if (Element < CompData.MinValue) or
 (Element > CompData.MaxValue) then
 raise EConvertError.CreateFmt(sOutOfRange,
 [Element, CompData.MinValue, CompData.MaxValue]);
 Include(Value, Element - MinElement);
 end;
end;

Figure 7: The StringToEnumSet function.

OP Tech

procedure SaveFont(Font: TFont; Reg: TRegistry);
var
 Style: TFontStyles;
begin
 Reg.WriteString('Name', Font.Name);
 Reg.WriteInteger('Size', Font.Size);
 Style := Font.Style;
 Reg.WriteString('Style',
 SetToString(TypeInfo(TFontStyles), Style));
end;

procedure LoadFont(Font: TFont; Reg: TRegistry);
var
 Style: TFontStyles;
begin
 Font.Name := Reg.ReadString('Name');
 Font.Size := Reg.WriteInteger('Size');
 StringToSet(Reg.ReadString('Style'),
 TypeInfo(TFontStyles), Style);
 Font.Style := Style;
end;

Figure 8: Saving a font in the registry.

Ray Lischner is the author of Delphi in a Nutshell [O’Reilly & Associates, 2000],
which contains the full story about Run-time Type Information, and other books
and articles about Delphi. He talks about Delphi and programming at conferences
and user-group meetings across the country. Ray also teaches Computer Science
at Oregon State University.
set elements. The final loop looks for a trailing non-alphanumeric
character as the suffix. If the string cannot be parsed, the function
raises an exception. Figure 7 lists StringToEnumSet.

Converting a string to a character set is harder, because parsing the
characters is more involved. The basic structure of StringToCharSet is
the same as StringToEnumSet, except that each set element must be
a character. StringToCharSet supports quoted characters and ordinal
values after a number sign (#127), which are the same formats used
by SetToString. Note that Delphi supports one other way to specify
characters: A caret followed by a character can be used for control
characters (^M). However, SetToString doesn’t use that format, so
StringToCharSet doesn’t either.
19 April 2000 Delphi Informant Magazine
A quoted character can be a repeated quote (''''). An ordinal
value can be decimal or hexadecimal (starting with a dollar sign,
as per Delphi conventions). The details of parsing characters aren’t
relevant to this article, so check out Listing One for the full story.

Putting It All Together
Now that you have the SetToString and StringToSet functions, you
need to put them to good use. For example, if you want to store
font information in the registry, you can store the font name as
a string, the size as an integer, and convert the style to a string,
as shown in Figure 8. Because the Value parameter is untyped,
you cannot pass a property directly to SetToString or StringToSet,
so you must use a temporary variable. If the font style is,
say, fsBold and fsItalic, the registry would contain the string
[fsBold,fsItalic].

The Object Inspector already uses a function similar to SetToString
to display the value of a set-type property. You can write your
own property editor for set-type properties and call SetToString. You
can even let the user type a new set value and call StringToSet —
something Delphi doesn’t currently allow.

Conclusion
The SetToString and StringToSet functions work with any set of any
type, thanks to the wonders of Run-time Type Information. How you
use these functions is up to you. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works CD in INFORM\00\APR\DI200004RL.

OP Tech
Begin Listing One — StringToCharSet
const
 Digits = ['0'..'9'];
 HexDigits = ['a'..'f', 'A'..'F'] + Digits;
 CharBegin = ['#', ''''];
 AsciiChars = [' '..'~']; // Printable ASCII characters.
resourcestring
 sNotAChar =
 'StringToSet: Not a valid character (%.10s)';
 sCharOutOfRange =
 'StringToSet: Character #%0:d is ' +
 'out of range [#%1:d..#%2:d]';

// Convert a string to a set of character elements.
procedure StringToCharSet(const Str: string;
 CompData: PTypeData; var Value: TSet);
var
 ElementName: string;
 Element: Integer;
 MinElement: Integer;
 Start: Integer;
 I: Integer;
begin
 MinElement := CompData.MinValue and ByteBoundaryMask;
 I := 1;
 while I <= Length(Str) do begin
 SkipWhiteSpace(Str, I);
 // Skip over one character, which might be the prefix,
 // a separator, or suffix.
 if (I<=Length(Str)) and not (Str[I] in CharBegin) then
 Inc(I);
 SkipWhiteSpace(Str, I);
 if I > Length(Str) then
 Break;
 case Str[I] of
 '#':
 begin
 // Character is specified by ordinal value,
 // e.g. #31 or #$A2.
 Inc(I);
 Start := I;
 if (I < Length(Str)) and (Str[I] = '$') then
 begin
 Inc(I);
 while (I <= Length(Str)) and
 (Str[I] in HexDigits) do
 Inc(I);
 end
 else
 begin
 while (I <= Length(Str)) and
 (Str[I] in Digits) do
 Inc(I);
 end;
 ElementName := Copy(Str, Start, I-Start);
 Element := StrToInt(ElementName);
 end;
 '''':
 begin
 // Character is enclosed in quotes, e.g. 'A'.
 Start := I; // Save position for error messages.
 Inc(I);
 if (I <= Length(Str)) then begin
 Element := Ord(Str[I]);
 if Str[I] = '''' then
 // Skip over a repeated quote character.
 Inc(I);
 // Skip to the closing quote.
 Inc(I);
 end;
 if (I <= Length(Str)) and (Str[I] = '''') then
 Inc(I)
 else
 raise EConvertError.CreateFmt(sNotAChar,
 [Copy(Str, Start, I-Start)]);
20 April 2000 Delphi Informant Magazine
 end;
 else
 // The unknown character might be the suffix. Try
 // skipping it and subsequent white space. Save the
 // original index in case the suffix-test fails.
 Start := I;
 Inc(I);
 SkipWhiteSpace(Str, I);
 if I <= Length(Str) then
 raise EConvertError.CreateFmt(sNotAChar,
 [Copy(Str, Start, I-Start)])
 else
 Exit;
 end;
 if (Element < CompData.MinValue) or
 (Element > CompData.MaxValue) then
 raise EConvertError.CreateFmt(sCharOutOfRange,
 [Element, CompData.MinValue, CompData.MaxValue]);
 Include(Value, Element - MinElement);
 end;
end;

End Listing One

21 April 2000 Delphi Informant Magazine

Greater Delphi
Internet Browsers / Web Servers / Cookies / HTTP

By Jon Etheredge
Maintaining State
Are Cookies the Answer to Session Control?

Managing state is an essential underpinning to mission-critical, browser-based appli-
cations. These programs need to behave as though they were running in a

completely trusted environment. Users must be identifiable, and their actions must
remain in context as far as the application is concerned. To do this, the programmer
needs to focus on techniques for maintaining state.
The problem, of course, is that applications run-
ning in a Web environment are, by definition,
stateless. Each time the CGI (Common Gateway
Interface) or ISAPI (Internet Server Application
Programming Interface) is called by the browser,
it treats the call as a new request for information.
Essentially “blind” to any previous requests this
browser has made, the Web application may need
to know certain details that help it determine how
these requests are to be handled.

What Is Mission-critical?
The term mission-critical is subject to some
amount of interpretation. Certainly, a college stu-
dent hard-pressed to finish a term paper might con-
sider his midnight Yahoo! searches to be mission-
critical, but that sort of activity falls far short of the
real definition. When designing Web applications
for industrial and government use, the programmer
can consider his project to be mission-critical when
it meets any one of the following criteria:
§ The data being transmitted is strictly regulated

by law or common practice, e.g. medical or
legal information.

§ Unauthorized access to the application might
present a risk of commercial or personal loss,
either to the organization, the user, or any
individual identified in the data stream.

§ Inability to access the application causes a work
stoppage, corrupts data, or results in financial
or personal harm of a grievous nature.

Essential to the definition is the concept of infor-
mation vulnerability. Whether a reasonable person
might expect data from the application to be
used in a harmful or unlawful manner is imma-
terial. Mission-critical applications require a flex-
ible approach to programming that often results in
tightly coded, unique products.

Obviously, this is more expensive than off-the-shelf
solutions. In part because of the cost factor, the
same objection to tight coding is heard in every
conference room and every office where Internet
projects are planned: “Oh, nobody is really going
to break in and steal our data!”

In fact, if US$500 can be made by stealing infor-
mation from your system, you can go to sleep at
night secure in the knowledge that someone, some-
where is working very hard to do just that. If drug-
test results can be altered, it’s worth somebody’s
time to attempt it. If children’s court records can be
opened, someone will make money finding a way
to get at the information.

If your company makes its living producing mission-
critical applications, a single failure with a single
client can put you out of business. No amount of
boardroom optimism will ever change that.

What Is Stateless?
Try to imagine a stateless session as a conversation
between two individuals who can neither see
nor hear the other. One of them remembers
everything that has been said (the browser). The
other one forgets everything that has been said
(the server). The browser asks the server a ques-
tion and receives a list of possible answers. It
then refines the question, based upon the initial

Greater Delphi
response, and asks for more information. Unfortunately, the server
has now forgotten the original question.

Session Information
To keep up the “conversation” between server and browser, the
browser must send specific information back to the server on each
request. This information needs to be unique to each session, and
needs to be reliable. It must be immune to guessing, getting lost, or
being confused as something else.

The server application will probably want quite a bit of information
about each browser request. This might include:
§ The age of the current session — No user should be allowed to

remain logged in indefinitely. For example, some client locations
may have only one browsing machine, and an indefinite session
length would allow everybody to use the same session (violating
standard security practices).

§ The amount of time since the last request — Users occasion-
ally walk away from their workstations in the middle of a
session. By limiting this time, the server can control most
unwanted data disclosures.

§ User rights — The type of information a user could see might be
spelled out in access permissions that can be transmitted as part
of the session information.

§ The address of the browser using this session — While this might
not always translate into a valid IP address, it can give important
information regarding the physical location of the user.

§ The type of browser being used — Referring to this infor-
mation can help the application determine whether to use
JavaScript, how to code HTML, or even whether access is
permitted at all.

Much more detail can be preserved, depending upon the specific
needs of the Web application. Frequently, far more detail is needed
than can be reliably transmitted with each page request.

Using Databases to Maintain State
No matter what method is used to pass session information
between browser and server, the validity of that information needs
to be checked against a database. Otherwise, the Web application
will have no way of knowing whether the session information
being transmitted is genuine.

The database can take any form, as long as it holds the session details
in a persistent manner. Some ISAPI applications use an internal
“database” made up of arrays or lists of objects describing each ses-
sion. These are only semi-persistent, however, and all users may be
forced to log in again if the application crashes or restarts.

Until Delphi 5 came along, ISAPI application developers fre-
quently ran into problems interfacing with databases. As a result,
many mission-critical applications ended up coded as CGI instead
of ISAPI.

CGI applications are more stable, of course, but they exact a
price. First, a separate copy of the CGI must be loaded every
time a browser makes a request from the server. Although the
cached copy of the CGI loads extremely quickly, the response
can be delayed by over a second if it needs to make a database
connection. Page production speed is an essential consideration
in any Web application, but, since most pages are menus and
instructions, there seems to be little reason to wait that additional
second while the session information is verified.
22 April 2000 Delphi Informant Magazine
Microsoft’s Active Server Pages (ASP) use the global.asa database to
store session variables about individual users, and use the Session
object as a means to address these variables. However, if the client
database uses InterBase, ASP has trouble coping. Until very recently,
ODBC drivers for InterBase were not thread-safe, and had a history
of refusing to perform certain operations, such as database inserts.

Session ID
The core piece of information used to maintain state is the session ID.
This is a number or string that describes the session in a unique, secure,
and reliable manner. It is essentially an index that can be used by the Web
application to find specific session information stored in the database.

The session ID must be difficult to guess. If these numbers are
issued sequentially or represent indexes into a small base of users,
brute-force attacks on the Web application are easier. This usually
means resorting to large, random numbers as the session ID.

The Delphi random number generator, however, is limited to 32-bit
integers. One solution would be to combine two 32-bit numbers in
a composite session ID. For instance, a composite 64-bit random
number could be generated with the following code:

sSessionID := IntToHex(Random($ffffffff),8) +
 IntToHex(Random($ffffffff),8);

This example might produce a session ID looking something like
“A23CF8F3.” This session ID would be nearly impossible to guess.

Keeping the session ID unique is a bit more involved. The larger
the session ID is relative to the installed base of users, the less likely
duplicates are to occur. Trusting fate, however, is not a wise strategy
in mission-critical applications. If using a TStringList of session
objects, the application can simply add the session ID to a string
in the list. If the string is set to sort automatically, duplicate session
IDs can be trapped by setting the TStringList.Duplicate property to
dupError. If the application stores sessions in a database, then the
SessionID field of the sessions table should be constrained to use
unique values. This way, violations of this constraint can be trapped.

Remote Address Variable
But why generate a unique session ID at all? Why not just use the
REMOTE_ADDR environmental variable? In Delphi, that variable is
found in the TWebRequest.RemoteAddress object property. This returns
the IP address assigned to each browser. Because these are unique by
definition, they seem to be ideal candidates for use as session IDs.

However, the browser’s IP address presents one major problem that
severely limits its usefulness as a session identifier. Users working behind
address-translating firewalls or application proxy servers may not be able
to send their actual identity across to the Web application. This is a
common problem when dialing in through an ISP. The user’s IP address
might be translated into something like “philmax1-p75.mississippi.net.”
Because the RemoteAddress property is unreliable in large systems, it
should never be used as the session ID.

Whatever form the session ID takes, it needs to be sent between the
browser and the Web server on every request. The method by which
this information is sent deserves close inspection.

Session Information in Cookies
Cookies help track state information by recording essential data in
small files maintained by the browser on the client’s hard drive. ASP

Greater Delphi

procedure TWebModule1.WebModule1WebActionItem1Action(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
var
 tslCookie: TStringList;
begin
 tslCookie := TStringList.Create;
 tslCookie.Add('USERID=JME');
 Response.SetCookieField(tslCookie,'mydomain.com',
 '/scripts',Now,False);
 Response.Content := 'Cookie sent!';
 tslCookie.Free;
end;

Figure 1: Sending a cookie from a Delphi Web application.
uses cookies as its principal means of passing session identification
variables between the server and the browser. Cookies are equally
simple to use in Delphi, although more knowledge of the underlying
code is required. To send a cookie from a Delphi Web application is
very simple, as shown in Figure 1.

This sends a cookie to the browser along with the response stream.
Whenever the browser requests information from a Web applica-
tion located in the http://mydomain.com/scripts directory, this
cookie — if it’s on the hard drive — will be sent to the server
as part of the request stream. The operative phrase is “if it’s on
the hard drive.” The third parameter in the SetCookieField method
contains the value “Now.” You might interpret this to mean that
the cookie expires immediately, but it’s not that easy. “Now,” in
cookie terms, may not actually be now.

As an experiment, set up Netscape to prompt you before accepting
a cookie. Then write a test CGI in Delphi that sends a cookie set
to expire at “Now.” Finally, save your program in a scripts directory
on your workstation (running PWS or IIS), and load the CGI. If
your workstation is running under Central Daylight Savings Time
(this is GMT [Greenwich Mean Time] minus six hours), you’ll be
told that the cookie expired nearly 30 years ago!

The problem is that the cookie always assumes that the server was
running under GMT. Once on your browser, the cookie does some
math. It figures out what the GMT time is relative to your local time,
and then sets itself up to expire then. If your server was set up under
Central Daylight Savings Time, the cookie is actually running a little
late — about six hours worth.

It takes a little work, but once you have a firm handle on how
to set up the cookie expiration date, you can explicitly limit the
session time by limiting the lifespan of the cookie. Your CGI only
needs to read the contents of the cookie, and if there are none,
force the user to log in again. Reading a cookie is far easier than
sending one; for example:

procedure TWebModule1.WebModule1WebActionItem2Action(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 Response.Content:='<html><body><h1>COOKIE TEST</h1><hr>'
 + 'USER ID = ' + Request.CookieFields.Values['USERID']
 + '</body></html>';
end;

Some cookies never get stored on the browser’s hard drive. These are
known as “session cookies” because they only stay alive as long as the
browser is on. To set up a session cookie, the expiration date needs
23 April 2000 Delphi Informant Magazine
to be omitted from the cookie. In Delphi, this is done by setting the
date string to “-1” instead of “Now”. Cookies of this type can be
used to help determine if a user has shut down their browser.

If more information needs to be exchanged between the browser and
the server, the TStringList object used to set the cookie should have
additional Name=Value pairs added to it. Other than that, the code
in the TWebResponse.SetCookieField method is the same. The overall
effect, however, is quite different.

Drawbacks to Using Cookies
For each Name=Value pair sent to the SetCookieField method, an addi-
tional cookie is sent in the response stream. More cookies are sent as
the session data set becomes more complex. This can eventually overrun
the maximum cookie limit for a domain (20 cookies), with serious
consequences. The oldest cookie from that domain will be dropped.
Unfortunately, if all the cookies have the same date, they could all be
dropped. In a best-case scenario, some session information will be lost. At
worst, the cookies won’t work at all, and might even crash the browser.

One way to get around the 20-cookie domain limit is to send all the
session information as a single string, delimited somehow. Separating
fields with a special character (& for instance) will allow you to cram
more information into a single cookie. There are only two limitations
to this technique. One, you can’t have more than a single “=” (equal)
sign anywhere in the string. Otherwise, the SetCookieField method
will split the information into two cookies. And two, there is a size
limit to cookies; they cannot exceed 4,096 characters. If your session
information includes complex SQL strings, for instance, you can end
up with an invalid cookie.

There are other problems with cookies that deserve a closer look. To
function, cookies depend upon path specificity. Cookies are sent back
to the server if the browser’s URL matches the domain/path specified
in the cookie. A cookie set to respond to “/scripts/AnyCGI.Exe”,
for example, couldn’t be redirected to “/scripts/PassChange.Exe”. To
allow redirection, the path specification in this example would have
to be changed to “/scripts/”. Unfortunately, that cookie would also be
sent to “/scripts/LaundryList.Exe”, and might overwrite information
from properly authorized cookies.

Cookies are vulnerable to a more insidious problem as well: They
can be spoofed. Programmers can use the “domain override bug”
to set up a cookie domain field of “anywhere.com...” . When users
holding this cookie hit the site at “nowhere.com.../scripts/Test,” the
cookie is sent. This gets around the domain privacy model inherent
in cookies, and is a function of the browser being used. Internet
Explorer doesn’t store this cookie in a persistent state, running it
instead as a session cookie. Netscape runs the cookie normally.

The domain override bug only affects cookies carrying domain names,
not IP numbers. And its use as a hacking tool is highly questionable.
Nevertheless, because of well-publicized, and often misinterpreted flaws
in cookie design, many organizations have installed firewalls and proxy
servers that have the ability to strip cookies from the response stream.

If your Web application requires cookies, its design may require
clients to change their organizational MIS policies before they can
use your program. How difficult can this be? Until recently, AOL
users couldn’t receive cookies at all. The doctrine of requiring
cookies in mission-critical applications, therefore, may provide an
insurmountable marketing challenge. The negative impact on the
developer’s long-term income should deter such an approach.

Greater Delphi
Managing State with Forms
Before there were cookies, there were “Hidden” fields. These do not
show up in your browser forms, but are passed along with server
requests anyway. There are two ways to send form information back
to the Web server: use the Get and Post methods.

The Get method takes the Name=Value pairs from each form
input field and appends them to the URL. They’re then
passed into the Web application in the QUERY_STRING envi-
ronmental variable. In Delphi, Get variables are passed through
the TWebRequest.Query object. One principal disadvantage of
using the Get method is that the query string is displayed in
the browser’s address window. Even passwords, normally protected
from eavesdropping by hiding them in “password-type” fields, are
plainly visible if sent with the Get method.

The Post method sends the information in a separate data
stream, which the Delphi Web application reads through the
TWebRequest.Content object. The following HTML lines, for example,
will send the form information to the server using the Post method:

<Form Action="/scripts/AnyCGI.Exe" Method="Post">
 <Input Type="HIDDEN" Name="UserID" Value="JME">
</Form>

The Web application will decode this form as
Request.ContentFields.Values['UserID']='JME'. It’s just as
easy to deal with on the receiving side as information in a cookie,
but requires considerably more planning to set up. Some program-
mers consider hidden fields less secure than cookies because the
View Source browser command lets users see what information is
stored there.

Being able to see the contents of hidden fields is not a serious
drawback, however. The only information that should be abso-
lutely required would be the unique session ID. Anything else
needed to track this session should be stored in a persistent data-
base on the Web server.

Using URL Variables
One major benefit of using the Get method is the fact that the
QUERY_STRING variable can be set without using a form at all.
Web applications can append information of almost any type to
the end of the URL. This technique can be used to pass session-
tracking information between Web applications, or even between
Web servers.

Here’s what that paragraph means in practice. Suppose you have
an application that presents the user with a list of options, one of
which is “Change Password.” Your password modification program,
however, is in a separate CGI. What your code needs to do is forward
the request to the new program, using the following Delphi code:

with Request.ContentFields do
 if Values['Action'] = 'Change Password' then
 Request.SendRedirect('/scripts/NewPassword.Exe');

The trouble is that this code sample won’t work. Information passed
with the Post method can’t be redirected (a limitation of the HTTP
specification). The entire TWebRequest.Content object will be dis-
carded. Of course, you could recode all your Delphi Web applications
to use the Get method, but it’s a lot easier to simply append the
session ID to the redirection request:
24 April 2000 Delphi Informant Magazine
with Request.ContentFields do
 if Values['Action'] = 'Change Password' then
 Request.SendRedirect('/scripts/NewPassword.Exe?' +
 Values['SessionID']);

The new application can then look at the value of the
TWebRequest.Query property. It will contain a single number: the
session ID.

There are limitations associated with appending data to the URL,
regardless of whether you put it there in the code or use the Get
method. The most serious of these is the fact that you can send
a maximum of only 255 characters. Send more, and the browser
could crash. This is one of the major reasons to avoid using the
Get method to maintain state in applications that pass a lot of SQL
strings between multiple pages. It’s far more reliable to store your
session variables in a database, and simply pass the session ID.

This technique removes the limitation requiring you to always send
information in a form. By appending the session ID to the URL,
your Web pages can maintain state inside links, as well. For example,
to link to a special CGI, your HTML code might look like this:

In this example, the session ID, “FF2B87A3”, is sent as the only
variable in the query string. The Web application seeing this in the
TWebRequest.Query property would typically check to see whether a
session exists for this ID, and would either continue processing, or
halt (if the session ID didn’t match).

Sending Information with JavaScript
Java applets, ActiveX controls, and cookies can all be blocked with
appropriate firewall or proxy server applications. This is because any
element that exists outside of the HTML document itself can be
stripped away before the browser ever sees it. JavaScript, on the
other hand, only exists inside the HTML document. It always gets
delivered to the browser.

Of course, individual users could set their browsers to reject
JavaScript. This is less of a problem than firewall-level blocking,
as the programmer doesn’t have to contend with organizational
policies in order to make the product function.

Just to be on the safe side, however, mission-critical applications
should avoid the use of JavaScript in essential functions (such
as form submission buttons) wherever possible. Always have a
backup method to submit forms.

That being said, JavaScript is still one of the more useful of
the Web programming languages. If your Web application uses
graphical buttons, JavaScript is the only way to use those images
to submit forms.

Conclusion
There are problems that programmers can control, and some they
can’t. They can control the amount of information exchanged in
session tracking. They can control the method of transfer. They can
control the storage medium for session details.

The amount of data sent between the browser and Web server
should be kept to a minimum. The session information exchange
should normally consist of a unique, secure identifier, and nothing

Greater Delphi
else. Everything the application needs to know about the session
should be retrieved from storage.

Data sent between the browser and the Web server should be as
invisible as possible, but needs to match the intent of the data. For
instance, password forms should never use the form Get method,
because the password and user ID will eventually end up in the
browser history for anyone to see. The session ID can be sent openly
without fear of spoofing if it’s properly designed. Forms, JavaScript,
and URL appending can all be useful transfer methods, as long as
their individual limitations are understood.

The session information storage medium needs to be fast and robust.
Keeping session information in a list of objects on the DLL is fast
and easy, but suffers from volatility. The contents of this list should
be committed to an actual database before shutting down the Web
server, or all your users will have to log in again.

There will always be problems programmers can’t control. Data-
base drivers can interfere with one another, or with the correct
functioning of the application. Web site design requirements
may require a frames-based approach to forms. Client functional
requirements might dictate the need to code exclusively in CGI or
to support outdated browsers.

Perhaps the most restrictive problems involve organizational poli-
cies that limit user access across the Internet. These doctrines may
require firewall and proxy filters that exclude cookies, ActiveX,
and Java applets. Unless the programmer has absolute authority
over every aspect of user connectivity, filters such as these must
be assumed to be in place somewhere. For that reason alone, cook-
ies should never be the exclusive session-tracking method in any
mission-critical application. ∆

Jon Etheredge is a Senior Application Developer for Vision Software in Meridian,
MS, with over 15 years experience in military, medical, and legal software
systems. Vision Software provides consulting services, data collection, time
and attendance, maintenance management, Web-based database solutions,
and custom applications for industrial and government clients across the
United States. Contact Vision Software at (800) 464-1244, or visit their Web
site at http://www.vsnsoft.com.
25 April 2000 Delphi Informant Magazine

http://www.vsnsoft.com

26 April 2000 Delphi Informant Magazine

Informant Spotlight

By Chris Austria
Readers Choice Awards 2000
Y2K Bug, What Y2K Bug?

With the Y2K brouhaha behind us, it’s time to announce your picks for the best third-
party Delphi development tools for 1999. The dedicated companies that created

these products obviously decided to eschew the millennial hysteria, focusing on the future
instead. Reflecting the spirit of the greater Delphi community, these companies continued
to work hard to fashion tools that make Delphi developers’ lives easier, and to make them
more productive and efficient than ever.
The release of Delphi 5 also provided a new oppor-
tunity for many of these third-party companies to
provide new and improved versions of their various
tools. The Delphi third-party market is ever chang-
ing, reacting to the many forces in the industry. This

year’s ballot reflects those changes in the form of
new products and re-shaped categories. An interest-
ing mixture of old and new can be found in many
categories, resulting in an exciting dynamic we’ve
come to expect in the Delphi tools community.

Best Accounting Package

I predicted a close call in this category when I reported last year’s winners,
and I wasn’t disappointed. The three top contenders all made respectable
showings, with AdaptAccounts by Adapta Software the clear winner with
36 percent of the votes. Second place was not-so-clear, and we’re consider-
ing Bravosoft’s Bravo, and ColumbuSoft’s Accounting for Delphi, tied for
second place with 30 and 29 percent of the vote, respectively. This is
definitely a category to keep an eye on next year.

§ AdaptAccounts
§ Bravo
§ Accounting for Delphi
§ Other

§ Mastering Delphi 5
§ Borland Delphi 5 Developer’s Guide
§ Tomes of Delphi: Win32 Database Developer’s Guide
§ Tomes of Delphi: Win32 Graphics Programming
§ Delphi Developer’s Guide to OpenGL
§ Other

Best Book

One of the few categories left untouched, Best Book offered a slightly smaller
pile of books to select from this year. From the seven in this year’s ballot
rose two clear winners. First and second place honors go to Mastering Delphi

5 [SYBEX] by Marco Cantù, and Borland Delphi
5 Developer’s Guide [SAMS] by Steve Teixeira and
Xavier Pacheco, respectively. Mastering garnered
44 percent, and Borland Delphi 42 percent. Both
were way ahead of the group, with the next lead-
ing book collecting 4 percent of the votes.

Best Add-in

Part of Best Add-in/Library last year, this category now consists solely
of Delphi add-in products. A more clear-cut race was just what Eagle
Software’s CodeRush needed to take first place; it flew by the rest of
the pack, collecting 47 percent of the votes. The next closest competitor
is Multi-Edit from American Cybernetics, which collected 16 percent
(making it the most popular third-party editor). CodeRush placed second
last year, a significant 21 percent behind SysTools from TurboPower, which
is now in the Best Library category. What a difference a year — and a
well-defined category — makes.

§ CodeRush
§ Multi-Edit
§ StarTeam
§ ClassExplorer
§ CodeWright
§ Other

Informant Spotlight
Another category change was deemed
necessary here. Last year’s Best Charting/-
Imaging category has become Best
Charting/Mapping, with Best Imaging
Tool now its own category. teeChart Pro
from teeMach charted an incredible 71
percent of the votes in this category, with
the closest competition, Gigasoft’s ProEss-
entials, taking only 7 percent.

The need to reshape this category was
apparent when we looked at last year’s results, where teeChart Pro
(a charting product) edged out ImageLib Pro (an imaging product)
41 to 36 percent. Although we have a repeat winner this year,
ImageLib Pro now has a shot at taking first place in a distinct
imaging category. (You’ll soon see whether it does.)

Best Charting/Mapping Tool

§ teeChart Pro
§ ProEssentials
§ MapObjects
§ Graphics Server
§ Olectra Chart
§ Other

Now dubbed Best Communications
Tool, this is simply last year’s Best Con-
nectivity Tool category renamed. This
category’s name is now more precise, and
distinct from the new Database Connec-
tivity category (coming up next), but it
didn’t change the outcome of the voting.
The top four winners are identical to
last year’s, and show the same voting
pattern. Again, Async Professional from
TurboPower Software muscled its way

ahead of the pack with an amazing 78 percent of the votes, up
10 percent from last year. In fact, Async Pro has dominated this
category since the 1997 Readers Choice Awards. Next is HREF
Tools’ WebHub, gathering 9 percent of the votes.

Best Communications Tool

§ Async Professional
§ WebHub
§ IP*Works! Delphi Edition
§ Visual Voice
§ PowerTCP Internet Toolkit
§ Other

There’s been a marked increase of data-
base-related tools, so one category was
no longer sufficient. Now there are
three: Connectivity, Engine, and Tool.
In its first appearance in the Readers
Choice Awards, the Database Connec-
tivity category provided an exciting
turnout. First place clearly goes to Jason
Wharton’s IB Objects, with 25 percent-
age points. Jason is followed by ASTA
from ASTA Technology Group, which

gathered 18 percent. The next three products came in with 16,
14, and 10 percent, respectively, and promise to provide exciting
competition in the years to come.

Best Database Connectivity

§ IB Objects
§ ASTA
§ Direct Oracle Access
§ ODBC Express
§ Titan
§ Other
27 April 2000 Delphi Informant Magazine
§ Apollo
§ FlashFiler
§ Advantage Database Server
§ DBISAM
§ TOPAZ for Delphi
§ Other

Best Database Engine

Although new, this category includes
some familiar players; Advantage
Database Server, FlashFiler, Apollo,
DBISAM, and TOPAZ have made
appearances in previous Readers Choice
Awards. Placing them in a more func-
tion-specific database category provided
good competition this year. Coming
out on top was Apollo from Vista Soft-
ware (previously from Luxent Software
& Webworks) with a hefty 32 percent.
FlashFiler from TurboPower wasn’t far behind with 21 percent.

§ InfoPower
§ Rubicon for Delphi
§ SQL Navigator/TOAD
§ AdHocery
§ Brickhouse Object Architecture
§ Other

Best Database Tool

As we weeded out the more specialized
database products, this category’s partici-
pants are fewer — and more competi-
tive. The winner, Woll2Woll Software’s
InfoPower, took advantage of the situa-
tion and powered its way to the top with
an incredible 72 percent of the votes,
compared to a mere 8 percent last year.
Talk about coming from behind! Second
place went to Rubicon for Delphi, from
Tamarack Associates, which garnered 10
percent of the votes. Will someone bridge this huge gap next year,
or will InfoPower simply pull further away from the pack?

§ HelpScribble
§ RoboHELP
§ ForeHelp
§ DotHLP/DotCHM
§ Time2HELP
§ Other

Best Help-authoring Package

At some point, everyone who uses soft-
ware needs a little (or a lot of) help.
The participants in this category know
this, and devote a lot of energy helping
developers help their end users. Last
year, HelpScribble from Jan Goyvaerts
(JGsoft) helped itself to the top title,
barely edging out Blue Sky Software’s
RoboHELP by 1 percent.

This year, HelpScribble gains some
breathing room, compiling 34 percent, followed by RoboHELP,
with 27. Worthy of mention is this year’s and last year’s third-place
winner, ForeHelp from ForeFront, which never seems far behind.
This category never fails to provide an exciting finish, and I’m
positive next year will offer more of the same.

Informant Spotlight
As promised, the imaging products
now have their own arena to battle
in. VisImage ActiveX Pro from Vision-
ary Solutions is the clear winner this
year, gathering a hefty 42 percent of
the votes. Also in the frame, however,
is SkyLine Tools Imaging’s ImageLib
Corporate Suite, with a very respect-
able 33 percent of the votes. I’d keep
an eye out for these two, as I’m sure
they’re each picturing ways to take the
first-place honors home next year.

Best Imaging Tool

§ VisImage ActiveX Pro
§ ImageLib Corporate Suite
§ LEADTOOLS Imaging

Toolkit, et al.
§ ImagN’
§ ImagXpress
§ Other

Your good software means nothing if
you can’t get it deployed properly on
users’ computers. The products in this
category work hard to make things
work for you, and the fight to the top
was a nail-biter this year. Last year pro-
vided stiff competition as InstallShield
Express from InstallShield Software beat
out Wise Installation System from Wise
Solutions. This year, however, Wise
Installation System, with 45 percent of

the votes, gained enough ground to clearly pass InstallShield
Express, which garnered 39 percent of the votes.

Best Installation Package

§ Wise Installation System
§ InstallShield Express
§ Youseful
§ InstallFromTheWeb
§ PC-Install

For the first time in the history of the
Readers Choice Awards, first and second
place in one category go to a single com-
pany, in this case TurboPower Software.
Despite competing with a sister prod-
uct, the company’s SysTools collected a
commanding 74 percent, and its Lock-
Box locked in 8 percent of the votes.
Congratulations to TurboPower for their
stellar performance.

Best Library

§ SysTools
§ LockBox
§ ExpressBars Suite
§ Protection Plus
§ NWLib
§ Other
28 April 2000 Delphi Informant Magazine
§ CDK
§ Propel
§ WithClass!
§ Pro-Analyzer
§ Other

Best Modeling/CASE

The Best Modeling/CASE winner gets
bragging rights as the first champ in
a new category. Those rights go to
CDK from Eagle Software, which com-
piled 48 percent of the votes, a com-
fortable 25 percent more than Nevrona
Designs’ Propel, with 23. Although in
a different category, the products in the
Best Modeling/CASE category are pre-
vious Readers Choice participants and
have always provided great competition
in other categories in the past, so we can expect no less from them
in the future.

Best Reporting Tool

Last year, when ReportBuilder from
Digital Metaphors came out of nowhere
and decidedly took the title from two-
time winner ReportPrinter Pro, I knew
a great rivalry was in the mix. This
year, ReportBuilder again dominated the
ballot with a sizable 65 percent of the
votes in this category. Nevrona Designs’
ReportPrinter Pro must again settle for
second, with a respectable 20 percent.
If Delphi Readers Choice history is any
indication, picking the Best Reporting Tool next year won’t be a
black-and-white decision.

§ ReportBuilder
§ ReportPrinter Pro
§ ACE Reporter
§ Shazam Report Wizard
§ PrintDAT!
§ Other

Best Testing/Debugging Tool

In the end, we all know everyone makes
mistakes, including developers. Hence,
we embarked on a search for the Best
Testing/Debugging Tool, this year in
its own category for the first time.
In first place is Memory Sleuth/Sleuth
QA Suite, from no other than Turbo-
Power Software, compiling 49 percent
of the votes. Second place goes to Raize
Software Solutions’ CodeSite, with a
respectable 29 percent. How better to
test and debug your code than with
these winners?

§ Memory Sleuth/Sleuth QA
Suite
§ CodeSite
§ NuMega BoundsChecker
§ QTime
§ reAct
§ Other

Informant Spotlight
I can always count on the Best Training
players to provide a good match. This
year’s fight to the top left three standing in
close proximity. For the third year in a row,
InfoCan Management managed to out-
train the rest, gathering 22 percent of the
votes. Not far behind, however, are Blue
Star Training & Software, with 18 percent
of the votes, and Database Programmers
Retreat with 17. Blue Star wasn’t among
the top five finishers last year, and if this
second-place showing is any indication of

what this company is capable of, look for them next year.

Best Training

§ InfoCan Management
§ Blue Star Training & Software
§ Database Programmers

Retreat
§ GenoTechs
§ Keystone Learning Systems
§ Other

The previous Best VCL category is now
split in two. This proved to be a sound
decision, as this, the Best VCL Com-
ponent category, afforded the tightest
finish out of all the categories in the
ballot. Amassing 31 percent of the
votes, TurboPower Software’s Abbrevia
barely edged out Developer Express’
ExpressQuantumGrid, with 30 percent
of the votes. This one’s too close to call
— a statistical tie — with third place

honors going to Top Support’s TopGrid.

Best VCL Component

§ Abbrevia
§ ExpressQuantumGrid
§ TopGrid
§ TSyntaxMemo
§ GTSizer
§ Other
29 April 2000 Delphi Informant Magazine
As if one Best VCL category spin-off
wasn’t enough, TurboPower powered its
way through this category as well. With
a solid 28 percent of the possible
votes, TurboPower’s Orpheus finished
6 percentage points ahead of Raize
Software Solutions’ Raize Components
and Woll2Woll Software’s 1stClass, each
with 22 percent of the votes. Yep, it’s
another tie, this time for second. All
three are worthy and popular products,
and I predict another close encounter next year.

Best VCL Component Set

§ Orpheus
§ Raize Components
§ 1stClass
§ LMD-Tools
§ WPTools
§ Other

§ Xceed Zip
§ DynaZIP
§ Barcode Suite
§ Runtime Designer for Delphi
§ Olectra Resizer
§ Other

Best Utility

Mostly due to the re-shaping of the
ballot this year, none of last year’s top five
contenders are even in this year’s slimmer
Best Utility ballot. As a result, a fresh set
of competitors emerged, each attempting
to prove its worth as the Best Utility for
Delphi. Zipping up the top two spots
are Xceed Software’s Xceed Zip, with 29
percent of the votes, and DynaZIP from
InnerMedia, with 23 percent. In such
a heterogeneous category, it’s worth men-
tioning that third place went to Barcode Suite (from SkyLine Tools
Imaging), making it the most popular bar-coding tool.
Company of the Year
There is no Best Company category on the ballot, but the winner is
clear nevertheless. Special congratulations are in order for TurboPower
Software. Just in case you haven’t been keeping track, a TurboPower
product placed first in five categories — five! — and second in two.
This feat is completely unprecedented in the history of the awards.

Conclusion
Developers never tire of seeing new and improved products for their
favorite development environment, and Delphi’s third-party offerings in
1999 have fulfilled their expectations. While the rest of the world held its
breath awaiting the start of the two-thousandth year (actually the 1999th,
but who’s counting), the Delphi community looked forward, getting
a head start on a new and better year. Thanks to all the participants
in this year’s awards for their dedication to Delphi and their vision of
the future of Delphi development. Without their innovative products
and continued dedication to improvement, there would be no Readers

Choice Awards. The existence of such a diverse and powerful third-party
tools community is a testament to the appeal and endurance of Delphi.

Finally, a thank you to all of you readers who took the time to visit
our Web site and vote for your favorite products. (By the way: For the
first time, every vote was made at our Web site; we received no faxed
or snail-mail ballots.) Your opinions not only help the companies who
look for feedback so they can continue to improve their products, your
votes also help other Delphi developers select the products they need
to be as efficient and productive as possible. See you all next year. ∆

For information on contacting the winners, visit http://www.
DelphiZine.com, filename di200004ca_f.

§ ReportBuilder
§ Apollo
§ InfoPower
§ HelpScribble
§ CodeRush

Product of the Year

Once again, we wrap up with the single-most coveted award in the Readers Choice Awards. For a year, the winner
in this category gets bragging rights as the product that has proven itself the most popular product by Delphi
developers. That’s quite an honor.

This year’s winner is a repeat performer, ReportBuilder from Digital Metaphors. This time they
managed to build a 3-percent lead, garnering 11 percent of the votes, compared to last year’s 2-percent
lead over TurboPower’s Orpheus. Another surprise was that Orpheus wasn’t in the top nine finishers this
year. Second place instead goes to Vista Software’s Apollo, which wasn’t in the top finishers last year, with
8 percent of the votes. It just goes to show what a year of perseverance and hard work will do.

Chris Austria is Products Editor at Delphi Informant Magazine, and can be reached
via e-mail at caustria@informant.com.

§ Async Professional
§ Advantage Database Server
§ DBISAM
§ ExpressQuantumGrid
§ Other

http://www.delphizine.com
http://www.delphizine.com

30 April 2000 Delphi Informant Magazine

New & Used

By Bill Todd

Figure 1: The Data Inspector.
InfoPower 2000
A Must-have Delphi Component Suite Gets Better

Woll2Woll Software’s InfoPower gets better with every new release, and InfoPower
2000 for Delphi 4 and 5 and C++Builder 4 is no exception. Let’s start by looking at

the new features before reviewing the whole InfoPower component suite.
The architecture of the InfoPower components has
been changed to support any TDataSet descendant.
In the past, if you wanted to use an InfoPower data-
aware component, such as the TwwDBGrid, you had
to use the InfoPower dataset and data source compo-
nents to provide the data. Now you can use any Info-
Power data-aware control with any dataset and data
source components, as long as the dataset is a descen-
dant of TDataSet. This means that the InfoPower
controls now work with all of the standard Delphi
dataset components, including the ADO Express

and InterBase Express com-
ponents. Because the dataset
components used by virtu-
ally all third-party database
engines are descendants of
TDataSet, you can now use
InfoPower components with
them as well.

Another small change that
affects database engine
compatibility is that cus-
tomer picture masks you
create at design time are no
longer stored in a Paradox
table. Instead, custom pic-
ture masks are now stored
in InfoPowerMasks.ini so
you don’t need to have
the BDE available to work
with picture masks.

Major Enhancements
TwwDataInspector. The
major new component in
InfoPower 2000 is the
TwwDataInspector. The
Data Inspector is to data what the Delphi Object
Inspector is to objects and properties. Figure 1
shows the Data Inspector displaying data from a
single table. The Data Inspector lets you group data
from one or more tables hierarchically, and gives
users the ability to expand the various categories to
see progressively more detail. Each item in the tree
has its own DataSource and DataField properties,
making it an excellent tool for displaying one-to-
many relationships to any depth while using little
screen real estate. The built-in Navigator makes
browsing and editing data easy and familiar for
users. The Data Inspector can also be used as an
unbound control so you’re not limited to displaying
data from a database. This makes it an excellent tool
for setting configuration options or object proper-
ties within your application.

Setting up the Data Inspector at design time is easy
thanks to its Items Editor. Simply double-click the
Data Inspector to display the editor shown in Figure
2. Using the Items Editor, you can add additional
rows to the Data Inspector at any level. You can
also select any item and set its properties or event
handlers using the Object Inspector. Like all of the
InfoPower components, the Data Inspector and its
items have a rich set of events so you can add custom
behavior to any user action. Because you can embed
any of the InfoPower data-aware controls or any of
the controls from Woll2Woll’s 1st Class component
suite in the Data Inspector, you can display data
using any component that is appropriate. You can
even display rich text with all of its formatting.

Transparency. Another major new feature of Info-
Power 2000 is transparency and custom framing sup-
port in all of its components. This is one of those cases
where a picture is truly worth a thousand words (see

Figure 2: The Data Inspector Items Editor.

Figure 3: A form using transparency and custom framing.

New & Used
Figure 3). All InfoPower controls now have a Transparent property, which
allows the background to show through when set to True. All of the
components also have a Frame property, which controls the appearance
of the frame when the component has focus, and when it does not.

The check form in Figure 3 was built by dropping a TImage control
on the form and setting its Align property to alClient. The TImage
contains the background bitmap for the check. All the controls on
the form have their Transparent property set to True to allow the
bitmap to show through. In addition, all the edit controls have their
Color property set to clWindow so they will appear white when they
have focus. The check number in the upper-right corner shows how
the appearance of the controls changes when they have focus. This
is accomplished by setting the frame property so that all four sides
of the frame are visible when the component has focus, but only
the bottom edge is visible when the component does not have focus.
Although the check number uses a simple box frame style, you can
also choose bump, raised, lowered, or etched for a more sculptured
look. The Transparent and Frame properties make it easy to create
impressive forms that look like their paper counterparts.

TwwDBGrid. One of the stars of the InfoPower suite since version
1 is the TwwDBGrid, and it has been enhanced in two important
ways. First, the grid now has the ability to stream its display settings
to or from an INI file or the registry at run time. This lets you give
users the ability to change the grid’s appearance by changing column
widths and column order, and save their settings so the grid will look
the same the next time they start your application. Another problem
shared by all grids is the tradeoff between making columns wide
enough to show the full content of long text fields and keeping them
narrow enough to show all the fields without scrolling horizontally.
InfoPower’s solution is the option to place the mouse cursor on a cell
and have the full text appear in a pop-up hint window.

The InfoPower grid has always had the ability to embed its own
check box and combo box controls in the grid, but it now includes
the ability to embed many of the components from Woll2Woll’s 1st
Class product as well. Other features of the grid include displaying
memo and rich text fields in the grid editing memo or rich text
fields in a pop-up editor; multi-line rows; word wrap; turning off the
31 April 2000 Delphi Informant Magazine
row and/or column lines; using the column headings as pushbuttons;
treating the R key as Tab; leaving the grid if T is pressed
in the last column; footer cells for totals; picture mask support;
displaying graphics in cells or column headings; defining columns
that remain in view during horizontal scrolling; editing lookup and
calculated fields; and setting the color, font, and alignment of the
column headings. Even this list barely scratches the surface. To appre-
ciate the power of the grid, you need to read the chapter on the grid
in the InfoPower Developer’s Guide, which is over 30 pages long.

TwwDBRichEdit. The TwwDBRichEdit component is a powerful
pop-up word processor for creating and editing rich text. It now
offers the option to use the Microsoft Word spell checker and gram-
mar checker if Word is installed on the user’s PC. The dictionary and
spelling options the user has set in Word are used automatically in
InfoPower. Users can now set the background color of highlighted
text in the rich edit component’s word processor, and the word
processor now uses bitmapped menus. Several new events have also
been added to make it much easier to customize the behavior of
menu items in the word processor.

Some of My Favorites
TwwDBCombo. The InfoPower suite includes too many components
to describe in detail, so I’ll focus on my favorites. The TwwDBCombo
box offers many features that the Delphi equivalent doesn’t. Perhaps
the most valuable of these is the ability to enter pairs of values, one of
which is displayed in the combo box and the other is actually stored
in the database. You can also turn on Quicken-style incremental
searching, which many users like. The TwwDBComboDlg component
looks almost identical to a combo box, but the button contains an
ellipsis instead of a down arrow. You use this component to display
your own custom dialog box to aid the user in editing a field value.

TwwDBDateTimePicker. The TwwDBDateTimePicker provides a
drop-down calendar to make choosing a date easy. To enter the cur-
rent date, simply tap the spacebar. At the end of the date, you can
tap the spacebar again to enter the current time. The control will
also optionally display week numbers and you can control whether
the current date is circled in the calendar or not. An event is also
provided to allow you to control which dates are shown in bold.

TwwDBEdit. The TwwDBEdit control looks like an ordinary edit box,
but can be used with or without a dataset. Its most valuable single feature
is support for InfoPower picture masks. Picture masks are supported by
all of the InfoPower data-aware controls and are similar in concept to
Delphi’s edit masks. InfoPower’s picture masks let you control the format
of text that is entered in a field. For example, you can define a mask that
allows either a US five- or nine- digit ZIP code or a Canadian postal code

New & Used
to be entered. You can also create a mask that will automatically capitalize
the first letter of each word. Picture masks also provide automatic fill-in
of fields. For example, the mask {Red, Green, Blue} will automatically fill
in the entire word as soon as the first letter is typed. If the wwDBEdit
is bound to a date field and you set the AutoFillDate property to True,
the user can enter the current date by pressing the spacebar. You can also
enable word wrap to display text on multiple lines.

TwwDBLookupCombo. The TwwDBLookupCombo box not only allows
you to display a list of choices drawn from another dataset, it also allows
you to display multiple fields from the lookup table in the drop-down list
with or without column headings, with or without column dividers, and
with or without row dividers. You can enable Quicken-style incremental
searching and the sort order of the drop-down list. You can also use this
control without binding it to a dataset, which is ideal for letting users
choose values from a lookup table in a dialog box.

TwwDBLookupComboDlg. The TwwDBLookupComboDlg looks like
the TwwDBLookupCombo component, but when its button is clicked,
a dialog box appears that contains an edit box, a grid, and a combo
box. Typing in the edit box causes an incremental search of the grid
to occur. The combo box lets users choose which field to search on.
This component is ideal for searching through large datasets.

TwwDBNavigator. In addition to the buttons found in Delphi’s
DBNavigator, the TwwDBNavigator provides next-page and prior-page
buttons for moving through a grid a screen full of records at a time. It
also includes buttons to set a bookmark, go to a bookmark, display a
TwwDBRecordViewDialog, TwwFilterDialog, TwwSearchDialog, or
TwwLocateDialog. You can also add your own buttons to the Navigator
to provide custom functions. The Navigator can be displayed either
horizontally or vertically and supports multiple rows of buttons with
custom bitmaps. You can also use action lists to provide custom func-
tionality for the Navigator’s buttons.

TwwFilterDialog. InfoPower provides a complete suite of controls for
finding data lead by TwwFilterDialog. The Filter Dialog component
works with tables, queries, and even TClientDataSet to let users filter
their view of data. When filtering a query, you also have the option of
letting the database server perform the filter instead of fetching all of
the data and performing the filter on the user’s workstation. The Filter
Dialog has undergone major internal changes for this release to improve
its performance. The filter can encompass any number of columns
and supports matching on single values or a range of values. Filters
on columns can be logically connected using AND or OR and when
searching for a single value in a column, you can specify an exact match,
starts with, or search for the value anywhere in the columns text. You can
also control whether the match is case-sensitive or not, and you can give
the user the ability to logically invert the search and see all the records
that don’t match the specified criteria. The Filter Dialog can filter the
data using the OnFilterRecord event of the dataset component, the dataset
component’s Filter property, or by building the WHERE clause of a
query. By setting a couple of properties, you can ensure that you will get
the best possible performance with the back-end database you’re using.

TwwLocateDialog, TwwSearchDialog, and TwwIncrementalSearch.
Other search components include TwwLocateDialog, TwwSearchDialog,
and TwwIncrementalSearch. TwwLocateDialog lets a user easily
search for a value in a column using “exact match,” “starts with,”
or “is contained in” options. The user can also control the case
sensitivity of the search, and use wild cards in the search string.
Find First and Find Next buttons let a user easily step through all the
records that match the search criteria.
32 April 2000 Delphi Informant Magazine
TwwIncrementalSearch looks like an
edit box, but provides incremental
searching on a single field in a data-
set. As the user types each succeed-
ing letter, the dataset is dynami-
cally repositioned to the first record
that matches the characters typed
so far. TwwSearchDialog also pro-
vides incremental searching, but in
a dialog box that displays the data-
set being searched in a grid. The
user can choose which field to
search, and the dialog box can con-
tain a user-defined button that lets
you add custom features.

TwwRecordViewDialog and
TwwRecordViewPanel. Another
unique InfoPower component is
the TwwRecordViewDialog and its
cousin the TwwRecordViewPanel.
The biggest problem with grids is
having to scroll horizontally to see
all the fields in the current record.
The Record View Dialog lets you
pop up a dialog box that will show
all the fields from the current record
in any dataset in a Delphi form that
is created automatically, on the-fly when the dialog box is displayed.
The Record View dialog box not only creates the form on-the-fly, but
it picks the right edit control based on each field’s data type. By setting
a property, you can control whether the form will have a horizontal or
vertical layout. The Record View Panel provides the same functionality
in a panel that you can drop on your own custom form.

Documentation
InfoPower has always been known for its excellent documentation, and
version 2000 continues that tradition. In addition to complete online
Help, InfoPower 2000 comes with a 294-page spiral bound manual
that lays flat on your desk. All the properties, methods, and events
are clearly described and code samples are provided where necessary to
show you how to take maximum advantage of InfoPower’s features.

Conclusion
InfoPower 2000 continues InfoPower’s reputation as the must-have
add-in for Delphi. The InfoPower components make any database
application easier to develop and more powerful, whether it uses a
local table, is a client/server application, or is a multi-tier application.
There’s no other tool set I’ve seen that allows you to give your users
more power with less effort. ∆

InfoPower 2000 continues InfoPower’s
reputation as the must-have add-in for
Delphi. The InfoPower components make
any database application easier to
develop and more powerful, whether it
uses a local table, is a client/server
application, or is a multi-tier application.
There’s no other tool set I’ve seen that
allows you to give your users more power
with less effort.

InfoPower 2000 supports Delphi 4 and
Delphi 5. The Professional version includes
C++Builder 4 support and complete source
code for all of the InfoPower components.

Woll2Woll Software
2217 Rhone Drive
Livermore, CA 94550

Phone: (800) WOL2WOL
Web Site: http://www.woll2woll.com
Price: Standard, US$199; Professional,
US$299.

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database program-
ming books and over 60 articles, and is a member of Team Borland, providing
technical support on the Borland Internet newsgroups. He is a frequent speaker
at Borland Developer Conferences in the US and Europe. Bill is also a nationally
known trainer and has taught Paradox and Delphi programming classes across
the country and overseas. He was an instructor on the 1995, 1996, and 1997
Borland/Softbite Delphi World Tours. He can be reached at bill@dbginc.com.

http://www.woll2woll.com

TextFile
Marco Cantù, co-winner of the 1999 Spirit
of Delphi Award, is the author of one of
the most popular and highly regarded of all
Delphi book series, Mastering Delphi. When I
reviewed Mastering Delphi 3 [SYBEX, 1997] in
the December 1997 issue of Delphi Informant
Magazine, I mentioned that Marco Cantù’s
Mastering Delphi [SYBEX, 1995] was one of
the first Delphi books I purchased. I continue
to return to this series as a trusted reference.

Like its predecessors, Mastering Delphi 5
covers the Delphi landscape remarkably well.
Its comprehensiveness and attention to detail
set it apart from many other general intro-
ductory texts. The newest edition continues
this excellent tradition, and provides valuable
information on the new features in Delphi 5.
First we’ll take a detailed look at the general
content and then explore some of the topics
covering the new Delphi 5 features.

As in earlier editions, Mastering Delphi 5
is organized into five large sections. The
first part begins with a tour of Delphi’s
IDE, including such new Delphi 5 tools
as To-Do lists, keyboard mapping, and
Object Inspector enhancements. Cantù
shows how to use the Environment
Options dialog box to control new and
old features. The next two chapters provide
a thorough introduction to Object Pascal.
The second of these discusses advanced
topics, as well as some of the more
recent additions, such as interfaces. Some
topics covered in earlier editions (proce-
dural types) have been cut while others
(method pointers) remain. The detailed
discussion of the various types of strings
in Delphi is no longer as relevant, and
has been cut. The final chapter in the
introductory section deals with the Visual
Component Library (VCL).

The second part is devoted to using compo-
nents, beginning with more advanced aspects
of working with standard components and
issues related to applications, forms, and
the user interface. It does an excellent job
of covering basic UI issues, such as con-
trolling program behavior with menus, the

Mastering Delphi 5
33 April 2000 Delphi Informant Magazine
visual appearance of the various components,
dialog boxes, MDI applications, etc.

Part Three is devoted to writing database
applications. It is very close to the previous
edition with one important change: a new
chapter on ADO. This is one of the clearest
introductions to Delphi database program-
ming I’ve seen. It begins with basic concepts,
explains the essential components, and pro-
vides a wealth of examples demonstrating
many common tasks.

Part Four, “Components and Libraries,” is
reorganized considerably with fewer chap-
ters than Mastering Delphi 4 [SYBEX,
1998]. In the first chapter, “Creating Com-
ponents,” Cantù includes material pre-
viously included in a different chapter.
In addition to the basics, you learn
about writing component editors, property
editors, and experts/wizards. There are
also chapters on DLLs, “COM Program-
ming,” “Automation and ActiveX” (includ-
ing OLE), and Internet programming.

The final section of the book is called “Real
World Techniques.” The first chapter, enti-
tled “Multitasking, Multithreading, and Syn-
chronization,” is an excellent exposition of
these important topics. Cantù also provides
an excellent introduction to Delphi’s inte-
grated debugger, shares some debugging tech-
niques and tips, and explains how to handle
memory properly. There is a “grab bag” chap-
ter called “More Delphi Techniques,” which
deals with a plethora of topics from using
resources and printing, to working with the
Windows Clipboard. The final two chapters
explore Internet and multi-tier database pro-
gramming, respectively.

If you own one of the previous editions
of Mastering Delphi, you’re probably inter-
ested in the coverage of Delphi 5 topics. I’ve
already mentioned some. Additional high-
lights include the new Delphi 5 container
classes, which include TObjectList, and a
discussion of frames. There’s a chapter on
ADO and Delphi’s components that sup-
port it. Included is a discussion of moving
from Paradox to ADO. There’s also an
introduction to Delphi 5’s new Integrated
Translation Environment.

My opinion of Marco Cantù’s excellent book
has not changed with this latest edition; it’s
been strengthened. Admittedly, I have only
scratched the surface, but hopefully I’ve pro-
vided sufficient information for you to decide
whether this book is right for you. As with
its predecessors, it’s packed with useful tips,
excellent information about new Delphi 5 fea-
tures, and many practical programming exam-
ples. There is no CD-ROM accompanying
this book. Instead, you can download all
of the code from Cantù’s Web site (http://
www.marcocantu.com). Further, you can view
a complete list of the Delphi 5 topics covered,
considerably more than what I have listed. This
book is appropriate for all levels of Delphi
programmers, but especially for someone who
is just getting started with Delphi 5. I recom-
mend it highly.

— Alan C. Moore, Ph.D.

Mastering Delphi 5 by Marco Cantù,
SYBEX, 1151 Marina Village Parkway,
Alameda, CA 94501, (510) 523-8233,
http://www.sybex.com.

ISBN: 0-7821-2565-4
Price: US$49.99 (1,085 pages)

http://www.marcocantu.com
http://www.sybex.com
http://www.marcocantu.com

File | New
Directions / Commentary
The Future of Computing: Delphi and Linux

In the past year, there has been a great deal of interest in developing a Delphi-like tool to produce Linux applications.
This month, I will discuss two contrasting approaches. The first involves an open source project called Megido. The

second is Inprise’s decision to develop a version of Delphi for Linux. Because most readers of this magazine are Windows
developers, I’ll begin with a brief overview of Linux.
The World of Linux. Linux is based on UNIX, an operating system
developed by AT&T in the late sixties. Like DOS, UNIX was originally
a text-based system. The UNIX kernel was originally written in assembly
language and later rewritten in C in the early seventies. Because of
legal constraints, AT&T was unable to market UNIX. However, it did
make this promising operating system available to universities. During the
seventies, UNIX continued to develop at various universities, particularly
the University of California at Berkeley.

An important tradition began, one that continues today in Linux: the
tradition of users helping users. When Sun Microsystems decided to use
UNIX on workstations in the eighties, a new trend began. Today, as most
readers are aware, UNIX is one of the most popular operating systems for
large servers. But what about Linux?

Linux was first developed by Linus Torvalds as a substitute for UNIX.
Although it shares many of the features of UNIX, and is largely compatible
with its ancestor, there is one important difference. Linux was non-commer-
cial; it was released on the Internet under the GNU general public license.
Since then, a large community of developers and users has emerged, a
community that works together to develop Linux.

This operating system has many attractive features:
§ Memory protection. Each process runs in its own virtual memory

space; if one program or process crashes, it won’t leave the entire
system in an unstable state (as can happen so easily under “other”
operating systems).

§ Built-in support for multi-users and multitasking.
§ Excellent TCP/IP support that is superior to other operating systems.
§ Many development tools are available, with more on the way. Many

are free.
§ Ability to switch from one implementation to another, because Linux

is non-proprietary in nature.
§ A graphical user interface (GUI) called X-Windows.

This last point may be of particular interest to us because we use Delphi
to develop GUI programs for Windows. Just as in Windows, most of
the development in Linux is done in C/C++, but not all of it. While
working on this column, I did an Internet search (on Northern Lights,
my search engine of choice) using just two keywords: Linux and Pascal.
I ended up with over 37,000 references! You’ll be delighted, and maybe
a bit surprised, to learn that one of the folders Northern Lights created
to narrow the search was called “Delphi.” Many of these links take you
to various free Pascal compilers that support various operating systems,
including Linux. I will write more about this in future columns. One of
the outgrowths of these free Pascal initiatives is a project called Megido,
one that appears to be in the early stages of development.

The Megido Project. I first learned about Megido from the following
succinct post to the Delphi Advocacy List (TGAD): “These folks are
working on building a Delphi/Clone RAD tool for Linux. Looks interest-
ing.” I immediately checked out the site at http://www.megido.com
(completing this article, I went back to the site and found it under
34 April 2000 Delphi Informant Magazine
construction). The purpose of that project is stated as: “Do you need
a powerful, multi-platform, GPLed, Linux-oriented visual development
tool? That’s exactly what we are working on!” They list these goals:
§ Megido aims to create free Pascal-based RAD tools for the Linux

community.
§ Megido shares the visual development tool simplicity of program-

ming in all the Linux sophistication.
§ Megido is being distributed under GPL/L-GPL, supporting free

software movement.
§ Megido is using Free Pascal Compiler (GPL), the best Object Pascal

compiler, also Delphi compatible.
§ Megido is being developed by programmers all around the world

who want to contribute to Linux and to break the M$ empire.

Clearly there is no love affair between these folks and Microsoft. In
fact, there is considerable discussion on some of the Linux sites about a
coming war between Windows and Linux for dominance of the comput-
ing market. Prophecy or foolishness? Only time will tell. But there are
some interesting indicators that give some credence to the theory that
Linux will at least give Windows some competition in the next few years.
Corel Corp. has released a version of WordPerfect for Linux. This, in my
view, is significant. Will there be a version of Word for Linux? I don’t
think so. But there will be a version of Delphi.

Delphi for Linux. One of the early indications that Inprise was giving
serious consideration to developing a version of Delphi for Linux was a job
notice that a colleague in Project JEDI found on the Inprise site: “Senior
engineering position responsible for the research and development of major
subsystems of Delphi for Linux. Work with the entire team to create Delphi
for Linux.” Of course there was a significant buzz on this topic at last
summer’s conference in Philadelphia. Finally on Sept. 28, 1999, the official
announcement came that Inprise was “developing a high-performance Linux
application development environment” to support C, C++, and Delphi
development. They code-named the project “Kylix,” and indicated it would
be ready for release this year. Further, they promised it would be “one of the
first high-performance Rapid Application Development (RAD) tools for the
Linux platform.” This is something I am really looking forward to.

Admittedly, I have only been able to scratch the surface in this piece.
The purpose of this article was to examine certain trends and provide
important background information. Next month, I will share with you
several books on various aspects of Linux, so that you can learn more
about Linux as we all eagerly await Delphi for Linux.

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, specializing
in music composition and music theory. He has been developing education-
related applications with the Borland languages for more than 10 years.
He has published a number of articles in various technical journals. Using
Delphi, he specializes in writing custom components and implementing
multimedia capabilities in applications, particularly sound and music. You
can reach Alan on the Internet at acmdoc@aol.com.

http:://www.megido.com

	Table of Contents
	Delphi Tools
	MicroEdge Announces Visual SlickEdit 5.0 for Windows
	UCalc Announces UCalc Fast Math Parser 2.0
	combit Releases List &Label 6.0
	AutomatedQA Announces QTime
	Object River Announces COM Express 1.0
	Fenestra Technologies Offers Event Journal through Component Factory

	Delphi News
	Baltic Solutions Provides Web Site for Products Built with Delphi
	DelphiMag.com Receives Best of the Net Award
	ICG Announces New Online Publications,Retitles Existing Sites

	On the 'Net
	The Protocol
	The Language
	The Toolkit
	The Delphi Solution
	Logging in to Marine Adventures
	Returning WML to the Browser
	Storing Data Back to the Database
	Requesting Data from the DLL
	Conclusion

	DBNavigator
	Interface References versus Object References
	Interface Implementation by Delegation
	Comments on Interface Implementation by Delegation
	Interfaces and COM
	Interfaces and Delphi ’s Open Tools API
	Conclusion

	OP Tech
	About RTTI
	Sets in Delphi
	SetToString Function
	StringToSet Function
	Putting It All Together
	Conclusion
	Begin Listing One — StringToCharSet

	Greater Delphi
	What Is Mission-critical?
	What Is Stateless?
	Session Information
	Using Databases to Maintain State
	Session ID
	Remote Address Variable
	Session Information in Cookies
	Drawbacks to Using Cookies
	Managing State with Forms
	Using URL Variables
	Sending Information with JavaScript
	Conclusion

	Informant Spotlight
	Best Accounting Package
	Best Add-in
	Best Book
	Best Charting/Mapping Tool
	Best Communications Tool
	Best Database Connectivity
	Best Database Engine
	Best Database Tool
	Best Help-authoring Package
	Best Imaging Tool
	Best Installation Package
	Best Library
	Best Modeling/CASE
	Best Reporting Tool
	Best Testing/Debugging Tool
	Best Training
	Best VCL Component
	Best VCL Component Set
	Best Utility
	Product of the Year
	Company of the Year
	Conclusion

	New & Used
	Major Enhancements
	Some of My Favorites
	Documentation
	Conclusion

	TextFile
	File|New

